

DeFi-ying the Fed?

Monetary Policy Transmission to DeFi Rates

Andrea Barbon (University of St.Gallen)

Jean Barthélémy (Banque de France)

Benoit Nguyen (ECB)

January 2026, Scuola Normale Superiore di Pisa — DeFi and Crypto

Opinions expressed in this presentation are those of the authors and do not necessarily reflect the views of their respective institutions.

The Rise of Stablecoins

Overview

Supply

Transactions

Addresses

Insights

\$249.2T

Total Transaction Volume
Since 2019

\$20.7T

Adjusted Transaction Volume
Since 2019

14.2B

Total Transaction Count
Since 2019

3.9B

Adjusted Transaction Count
Since 2019

\$95.8B

Average Supply
Since 2019

461.1M

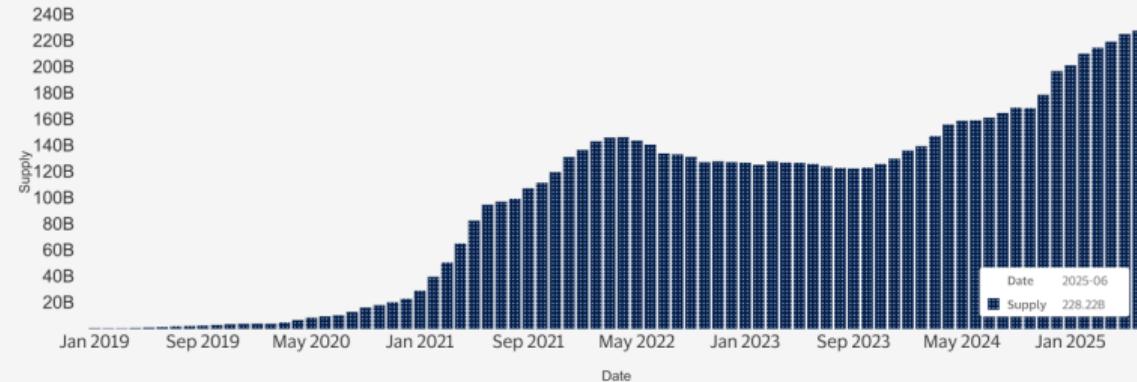
Active Unique Sending Addresses
Since 2019

599.0M

Active Unique Receiving Addresses
Since 2019

603.4M

Total Active Unique Addresses
Since 2019


Average Stablecoin Supply, All Stablecoins

The average supply of stablecoins in circulation, across all stablecoins

1M 3M 6M 12M 24M All

Bucket By Month

The Rise of Stablecoins

Overview

Supply

Transactions

Addresses

Insights

We are not
affiliated
with VISA

\$249.2T

Total Transaction Volume
Since 2019

\$20.7T

Adjusted Transaction Volume
Since 2019

14.2B

Total Transaction Count
Since 2019

3.9B

Adjusted Transaction Count
Since 2019

\$95.8B

Average Supply
Since 2019

461.1M

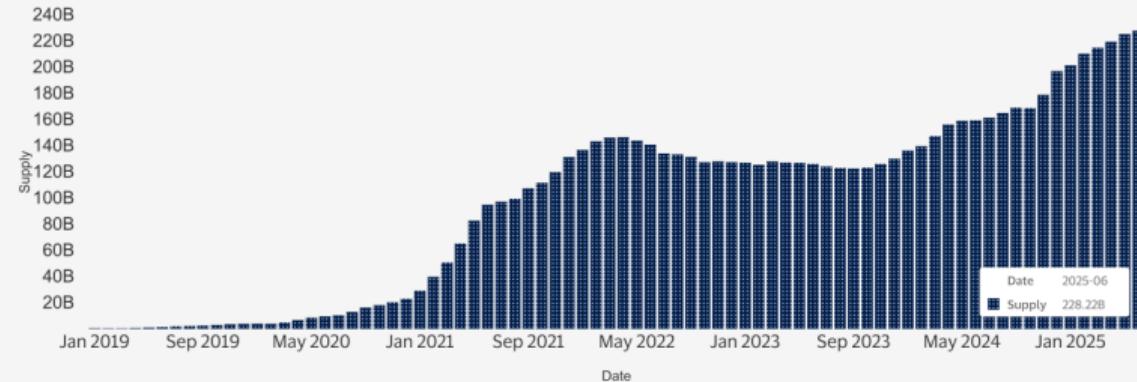
Active Unique Sending Addresses
Since 2019

599.0M

Active Unique Receiving Addresses
Since 2019

603.4M

Total Active Unique Addresses
Since 2019


Average Stablecoin Supply, All Stablecoins

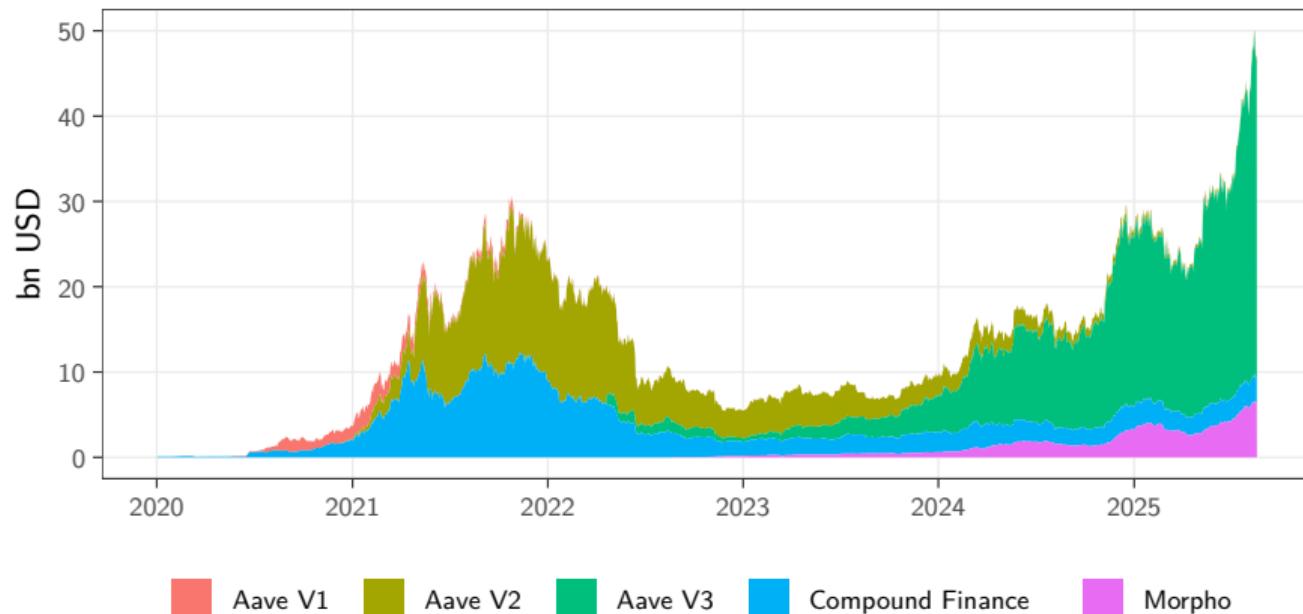
The average supply of stablecoins in circulation, across all stablecoins

1M 3M 6M 12M 24M All

Bucket By Month

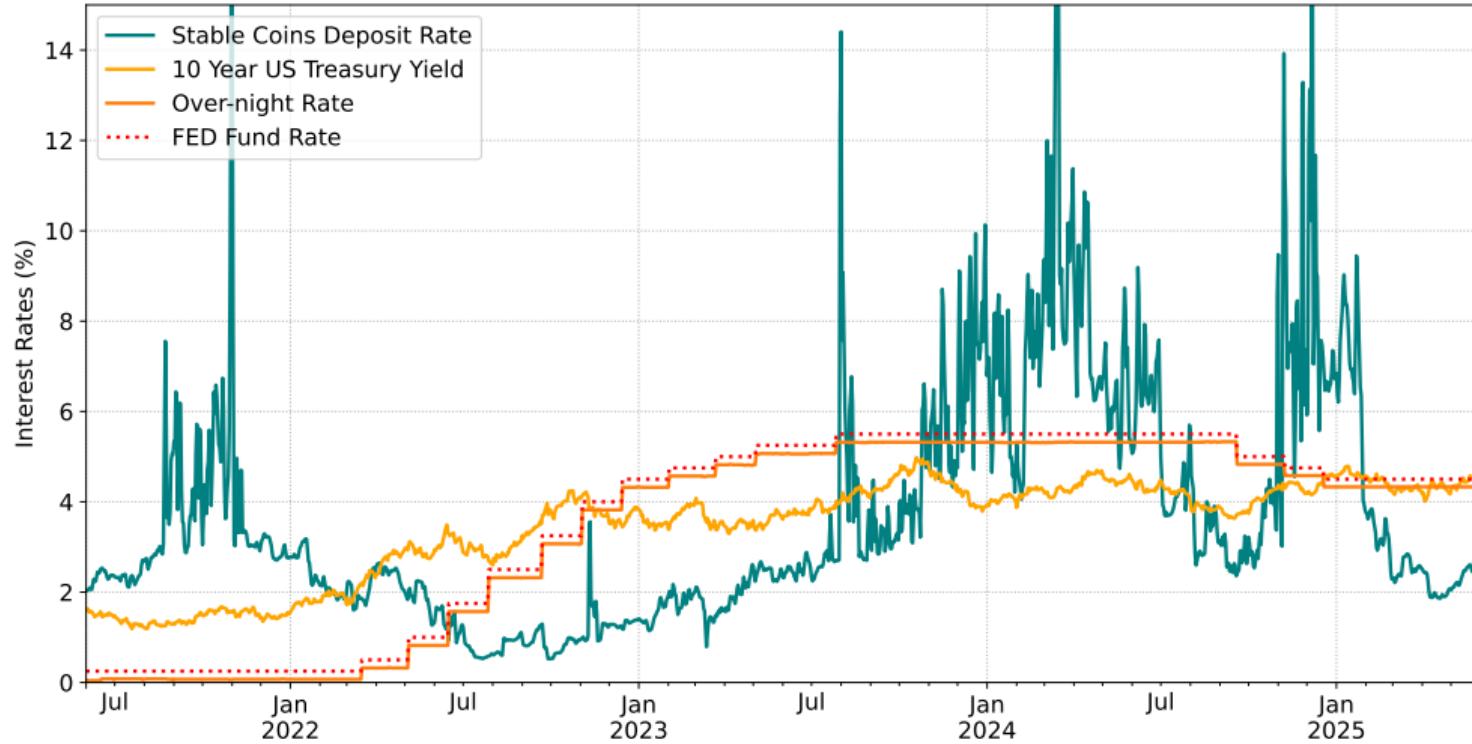
Monetary Policy Transmission

DeFi Rates


- Most stablecoins do not pay interest natively
- But can be borrowed and lent in DeFi lending protocols (AAVE, Compound...)

Monetary Policy Transmission

- Monetary policy effectiveness depends on its transmission to multiple rates
- But what about transmission to DeFi rates?


This paper: Analyze the pass-through of FED's monetary policy to DeFi rates

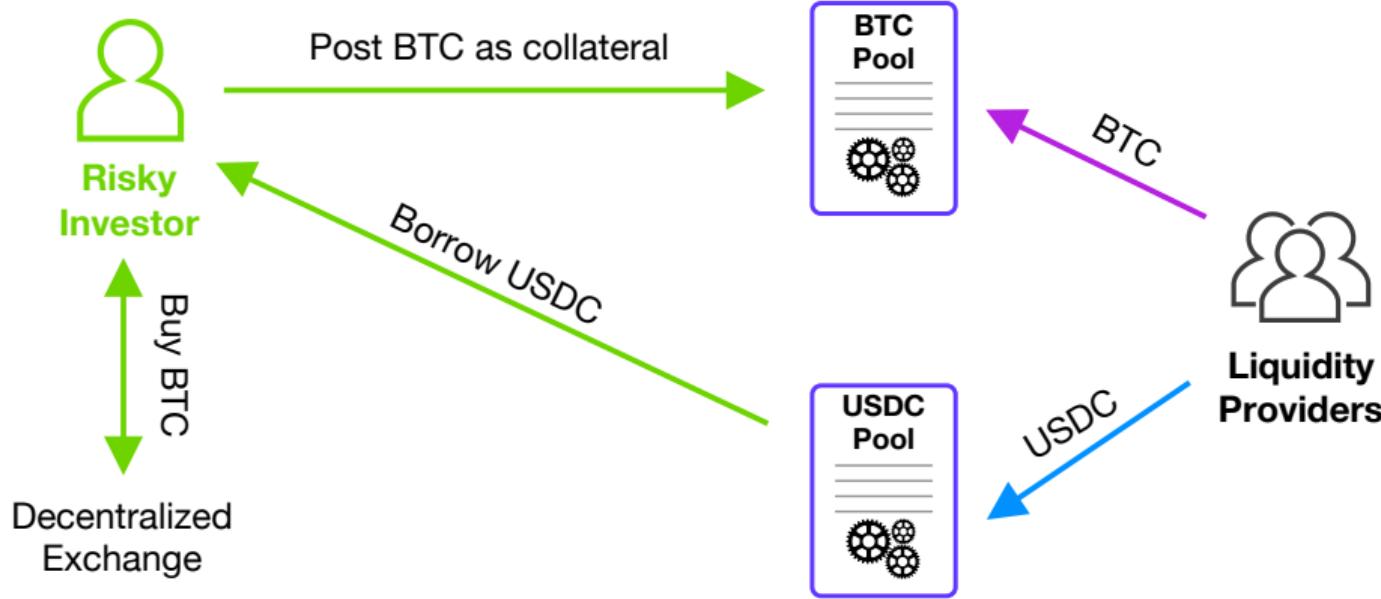
Deposits in DeFi Lending Protocols

The figure displays the time-series evolution of the Total value locked (TVL) in main lending protocols from Jan 2020 to Aug 2025, in billion USD. Data source: DeFiLlama.

The Recent Fed's Hiking Cycle

DeFi Lending & borrowing: A Primer

- **Liquidity Providers (LPs)** deposit stablecoins in liquidity pools (smart contracts)
- Other users can borrow those, posting a crypto collateral (ETH, BTC, ...)
- Loans are **overcollateralized**, with haircuts around 20% (depending on the volatility of the collateral asset)
- Each borrower has a health ratio, defined as


$$HF = \frac{\text{Collateral Value} \times \text{Liquidation Threshold}}{\text{Borrowed Value}}$$

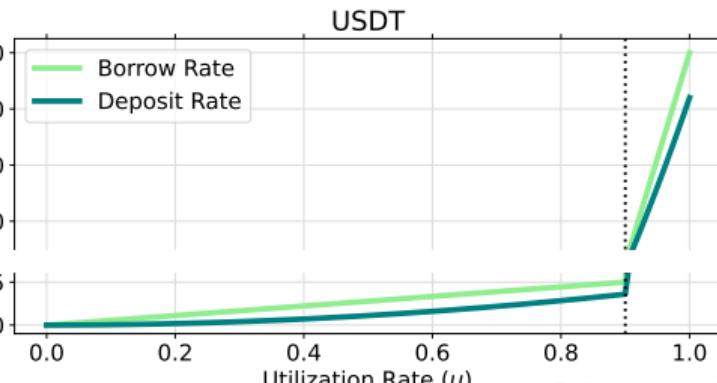
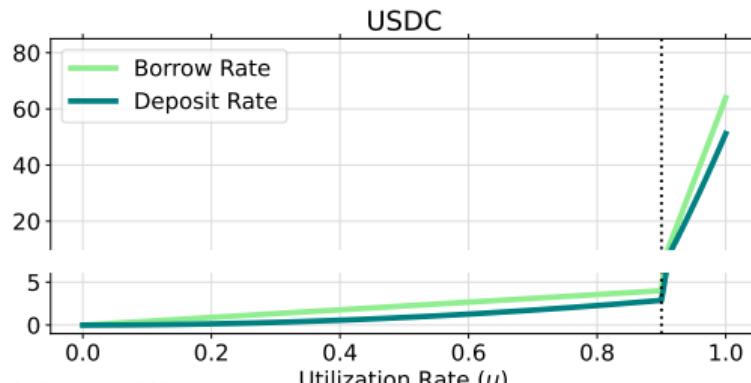
- If $HF < 1$, the collateral assets are eligible for liquidation

Decentralized Leverage

- **Risky investors** use these overcollateralized loans to take leveraged positions on crypto assets (BTC, ETH, ...)

DeFi Rates

DeFi lending rates are set automatically, based on the **utilization rate**



$$u = B/S = \text{Borrowed amount/Supplied amount}$$

Borrow Rate:

$$f(u) = \begin{cases} \alpha + \beta \frac{u}{\bar{u}} & \text{if } u < \bar{u} \\ \alpha + \beta + \beta' \frac{u - \bar{u}}{1 - \bar{u}} & \text{if } u \geq \bar{u} \end{cases}$$

Deposit Rate: $u \cdot f(u)$

In Aave V3, $\alpha = 0$
and
 $\beta = 0.065$
 $\beta' = 0.2$

A Simple Model of MP passthrough to DeFi rates

Environment in a nutshell

- Two dates: $t \in \{0, 1\}$
- The risk-free rate is denoted by ρ^*
- Two types of investors: **liquidity providers** (LPs) and **risky investors**
- Two digital assets: a **risky crypto-asset** ($\mathcal{N}(\rho_U, \sigma_U)$) and a **stablecoin**
- A DeFi protocol: lending and borrowing stablecoin
- LPs deposit a quantity S and face an opportunity cost ρ^*
- Risky investors borrow a share of these tokens B
- DeFi lending rate is $uf(u)$ with $u = B/S$ and borrowing rate $f(u)$

Model - Supply and Demand Equations

Liquidity Providers

$$\begin{aligned} \max_{S \geq 0} \quad & (uf(u) - \theta\psi - \rho^*)S \\ & - \frac{\theta(1-\theta)}{2} \gamma \psi^2 S^2 \end{aligned}$$

Implying the supply curve:

$$S = \max \left\{ 0; \frac{uf(u) - \rho^* - \theta\psi}{\theta(1-\theta)\gamma\psi^2} \right\}$$

Model - Supply and Demand Equations

Liquidity Providers

$$\begin{aligned} \max_{S \geq 0} \quad & (uf(u) - \theta\psi - \rho^*)S \\ & - \frac{\theta(1-\theta)}{2} \gamma \psi^2 S^2 \end{aligned}$$

Risky Investors

$$\begin{aligned} \max_{U, B \geq 0} \quad & (1 + \rho_U(\rho^*))U - (1 + f(u))B \\ & - (1 + \rho^*)W' - \frac{\gamma'}{2} \sigma_U^2 U^2 \\ \text{s.t.} \quad & W' + B \geq U, \quad (1 - h_U)U \geq B \end{aligned}$$

Implying the supply curve:

$$S = \max \left\{ 0; \frac{uf(u) - \rho^* - \theta\psi}{\theta(1-\theta)\gamma\psi^2} \right\}$$

Implying the demand curve:

$$S = \frac{1}{u} \min \left\{ \frac{\rho_U(\rho^*) - f(u)}{\gamma'\sigma_U^2} - W'; \frac{1 - h_U}{h_U} W' \right\}$$

Model - Supply and Demand Equations

Liquidity Providers

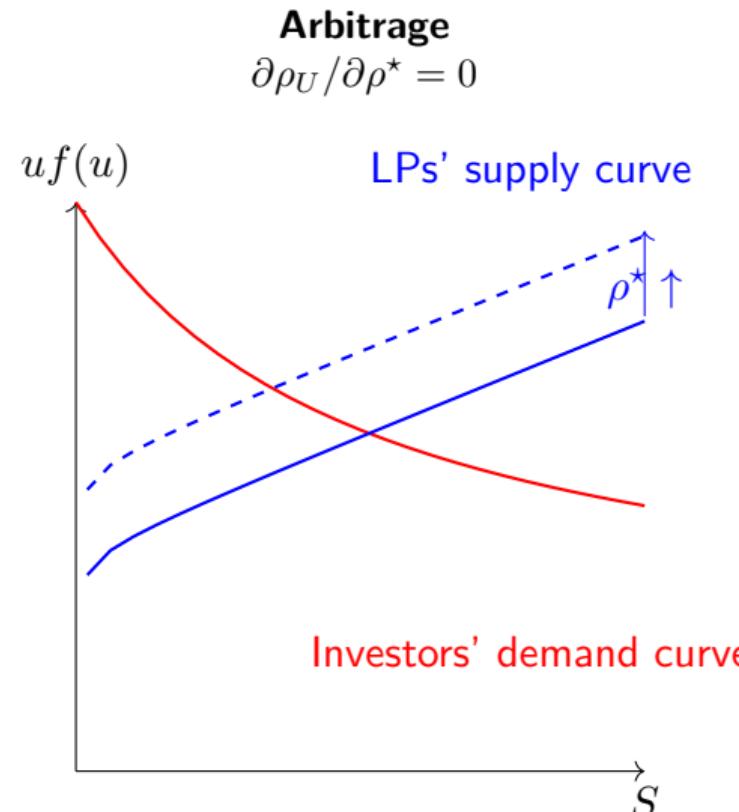
$$\begin{aligned} \max_{S \geq 0} \quad & (uf(u) - \theta\psi - \rho^*)S \\ & - \frac{\theta(1-\theta)}{2} \gamma\psi^2 S^2 \end{aligned}$$

Risky Investors

$$\begin{aligned} \max_{U, B \geq 0} \quad & (1 + \rho_U(\rho^*))U - (1 + f(u))B \\ & - (1 + \rho^*)W' - \frac{\gamma'}{2} \sigma_U^2 U^2 \\ \text{s.t.} \quad & W' + B \geq U, \quad (1 - h_U)U \geq B \end{aligned}$$

Implying the supply curve:

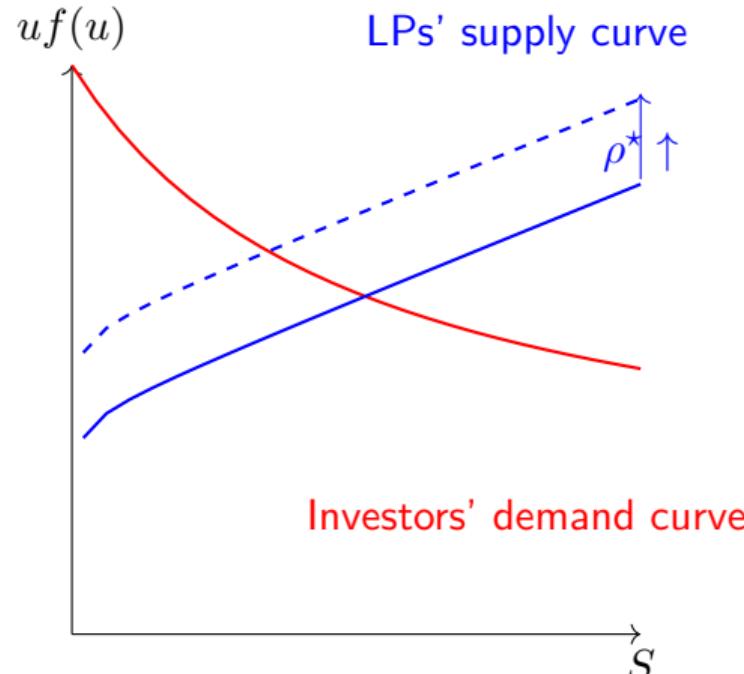
$$S = \max \left\{ 0; \frac{uf(u) - \rho^* - \theta\psi}{\theta(1-\theta)\gamma\psi^2} \right\}$$


Implying the demand curve:

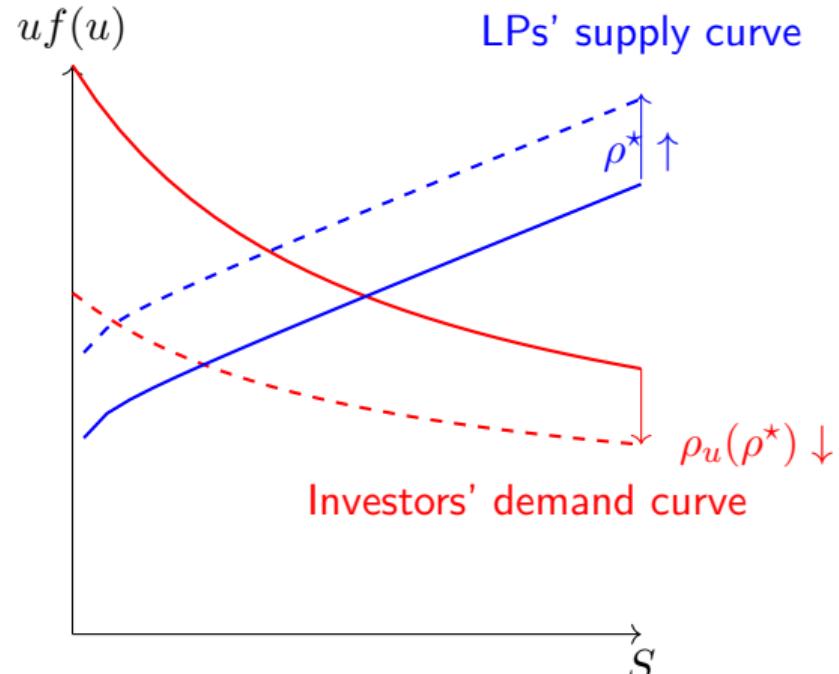
$$S = \frac{1}{u} \min \left\{ \frac{\rho_U(\rho^*) - f(u)}{\gamma'\sigma_U^2} - W'; \frac{1 - h_U}{h_U} W' \right\}$$

The unique interior equilibrium satisfies

$$\frac{uf(u) - \rho^* - \theta\psi}{\theta(1-\theta)\gamma\psi^2} = \frac{1}{u} \cdot \frac{\rho_U(\rho^*) - f(u) - W'\gamma'\sigma_U^2}{\gamma'\sigma_U^2}$$


Two Monetary Policy Transmission Channels

Two Monetary Policy Transmission Channels


Arbitrage

$$\partial \rho_U / \partial \rho^* = 0$$

Arbitrage and Leverage

$$\partial \rho_U / \partial \rho^* < 0$$

MP Passthrough to stablecoin rate is higher when

- Demand for leverage does not decrease too much with Fed's rates
- LP concentration is high (extension)
- Transaction fees are low (extension)

Other determinants

- Additional risks faced by LPs (liquidation risks)
- Exogenous fluctuations in demand for leverage

Data & Empirical Strategies

- Blockchain data for 3 stablecoins (USDT, USDC, and DAI) on Ethereum
- Transactions are gathered from the [AAVE v2 Lending Pool](#) and the [AAVE v3 Pool](#) smart contracts
 - (i) **Deposit** and **Withdraw** transactions, which we use to reconstruct the historical levels of liquidity deposited in the protocol for each stablecoin
 - (ii) **Borrow** and **Repay** transactions, to reproduce the historical outstanding borrowed amounts by stablecoin
- We have more than 2.5M transactions, from May 2021 to May 2025
- Prices of ETH and BTC call and put options from *tardis.dev*

Data & Empirical Strategies

- Blockchain data for 3 stablecoins (USDT, USDC, and DAI) on Ethereum
- Transactions are gathered from the [AAVE v2 Lending Pool](#) and the [AAVE v3 Pool](#) smart contracts
 - (i) **Deposit** and **Withdraw** transactions, which we use to reconstruct the historical levels of liquidity deposited in the protocol for each stablecoin
 - (ii) **Borrow** and **Repay** transactions, to reproduce the historical outstanding borrowed amounts by stablecoin
- We have more than 2.5M transactions, from May 2021 to May 2025
- Prices of ETH and BTC call and put options from *tardis.dev*

Three empirical strategies: event study, panel regression, local projection.

Event Study

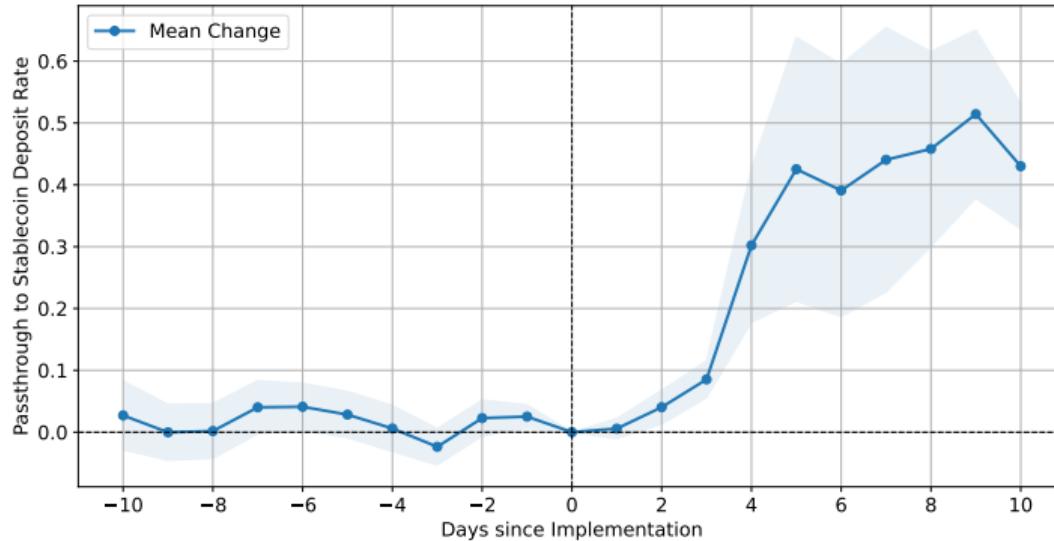


Figure: Event study around Fed policy rate hikes

Panel Regression

$$\begin{aligned}\text{DeFi Rate}_{ct} = & \alpha_c + \beta \text{ Risk-free}_{ct} \\ & + \gamma_1 \text{ LiqRisk}_{ct} + \gamma_2 \mathbf{X}_{ct}^{\text{crypto}} + \gamma_3 \mathbf{X}_{ct}^{\text{equity}} \\ & + \delta \text{ DeFi Rate}_{c,t-1} + \epsilon_{ct}\end{aligned}$$

- $\mathbf{X}_{ct}^{\text{crypto}}$: BTC Price, BTC Volatility, BTC Momentum, Gas Price
- $\mathbf{X}_{ct}^{\text{equity}}$: S&P Return, S&P Volatility, S&P Momentum, Inflation Swap, VIX
- Risk-free rate: the SOFR rate (robust to other rates)

Panel Regression - Main Results

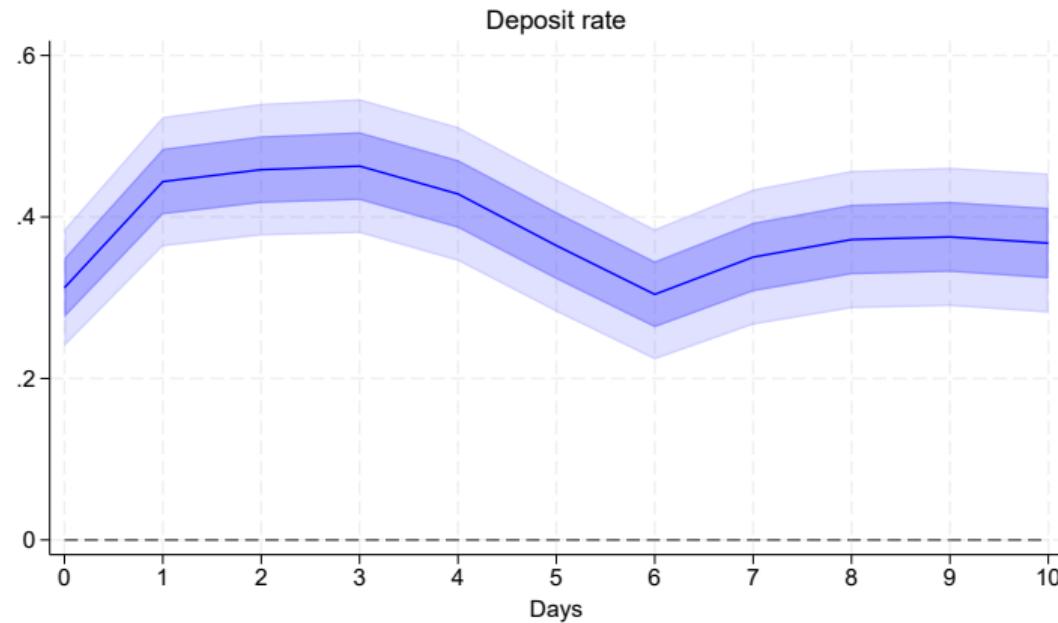
	(1)
Dep. Variable	DeFi Rate
Risk-free	0.09 (1.19)
	Liquidation Risk
	Crypto Controls
	Market Controls
	Deposit Rate (t-1)
Intercept	4.09*** (13.91)
Observations	4,812
R-squared	0.00
SEs clustering	Coin and Day

Panel Regression - Main Results

	(1)	(2)
Dep. Variable	DeFi Rate	DeFi Rate
Risk-free	0.09 (1.19)	0.61*** (12.33)
Liquidation Risk		0.08*** (7.68)
Crypto Controls		
Market Controls		
Deposit Rate (t-1)		
Intercept	4.09*** (13.91)	-3.50*** (-7.86)
Observations	4,812	4,812
R-squared	0.00	0.05
SEs clustering	Coin and Day	Coin and Day

Panel Regression - Main Results

	(1)	(2)	(3)
Dep. Variable	DeFi Rate	DeFi Rate	DeFi Rate
Risk-free	0.09 (1.19)	0.61*** (12.33)	0.79*** (21.49)
Liquidation Risk		0.08*** (7.68)	0.04*** (4.50)
Crypto Controls			Yes
Market Controls			
Deposit Rate (t-1)			
Intercept	4.09*** (13.91)	-3.50*** (-7.86)	-4.14*** (-11.70)
Observations	4,812	4,812	4,812
R-squared	0.00	0.05	0.31
SEs clustering	Coin and Day	Coin and Day	Coin and Day


Panel Regression - Main Results

	(1)	(2)	(3)	(4)
Dep. Variable	DeFi Rate	DeFi Rate	DeFi Rate	DeFi Rate
Risk-free	0.09 (1.19)	0.61*** (12.33)	0.79*** (21.49)	0.67*** (19.53)
Liquidation Risk		0.08*** (7.68)	0.04*** (4.50)	0.07*** (11.08)
Crypto Controls			Yes	Yes
Market Controls				Yes
Deposit Rate (t-1)				
Intercept	4.09*** (13.91)	-3.50*** (-7.86)	-4.14*** (-11.70)	-7.79*** (-7.50)
Observations	4,812	4,812	4,812	4,812
R-squared	0.00	0.05	0.31	0.37
SEs clustering	Coin and Day	Coin and Day	Coin and Day	Coin and Day

Panel Regression - Main Results

	(1)	(2)	(3)	(4)	(5)
Dep. Variable	DeFi Rate	DeFi Rate	DeFi Rate	DeFi Rate	DeFi Rate
Risk-free	0.09 (1.19)	0.61*** (12.33)	0.79*** (21.49)	0.67*** (19.53)	0.31*** (6.43)
Liquidation Risk		0.08*** (7.68)	0.04*** (4.50)	0.07*** (11.08)	0.03*** (3.50)
Crypto Controls			Yes	Yes	Yes
Market Controls				Yes	Yes
Deposit Rate (t-1)					0.55*** (7.42)
Intercept	4.09*** (13.91)	-3.50*** (-7.86)	-4.14*** (-11.70)	-7.79*** (-7.50)	-3.47*** (-5.11)
Observations	4,812	4,812	4,812	4,812	4,812
R-squared	0.00	0.05	0.31	0.37	0.56
SEs clustering	Coin and Day	Coin and Day	Coin and Day	Coin and Day	Coin and Day

Local Projections

Figure: Impulse responses of DeFi deposit rates to a 1pp shock in the risk-free rate proxied by SOFR. The panels show impulse responses estimated using local projections with a 10-day horizon.

Passthrough Heterogeneity - Possible Factors

Possible factors affecting the passthrough:

Passthrough Heterogeneity - Possible Factors

Possible factors affecting the passthrough:

- **Imperfect competition / LP concentration**

Proxy: Transaction-level data to compute the HHI index of liquidity provision, at the stablecoin-day level

Passthrough Heterogeneity - Possible Factors

Possible factors affecting the passthrough:

- **Imperfect competition / LP concentration**

Proxy: Transaction-level data to compute the HHI index of liquidity provision, at the stablecoin-day level

- **Limits to arbitrage / Transaction fees**

Proxy: Daily gas prices on Ethereum from Dune Analytics

Passthrough Heterogeneity - Possible Factors

Possible factors affecting the passthrough:

- **Imperfect competition / LP concentration**

Proxy: Transaction-level data to compute the HHI index of liquidity provision, at the stablecoin-day level

- **Limits to arbitrage / Transaction fees**

Proxy: Daily gas prices on Ethereum from Dune Analytics

- **Risks / Hacks**

Proxy: Top decile of the daily distribution of the U.S. dollar value stolen from DeFi platforms by malicious actors. Source DefiLlama.

Passthrough Heterogeneity - Possible Factors

Possible factors affecting the passthrough:

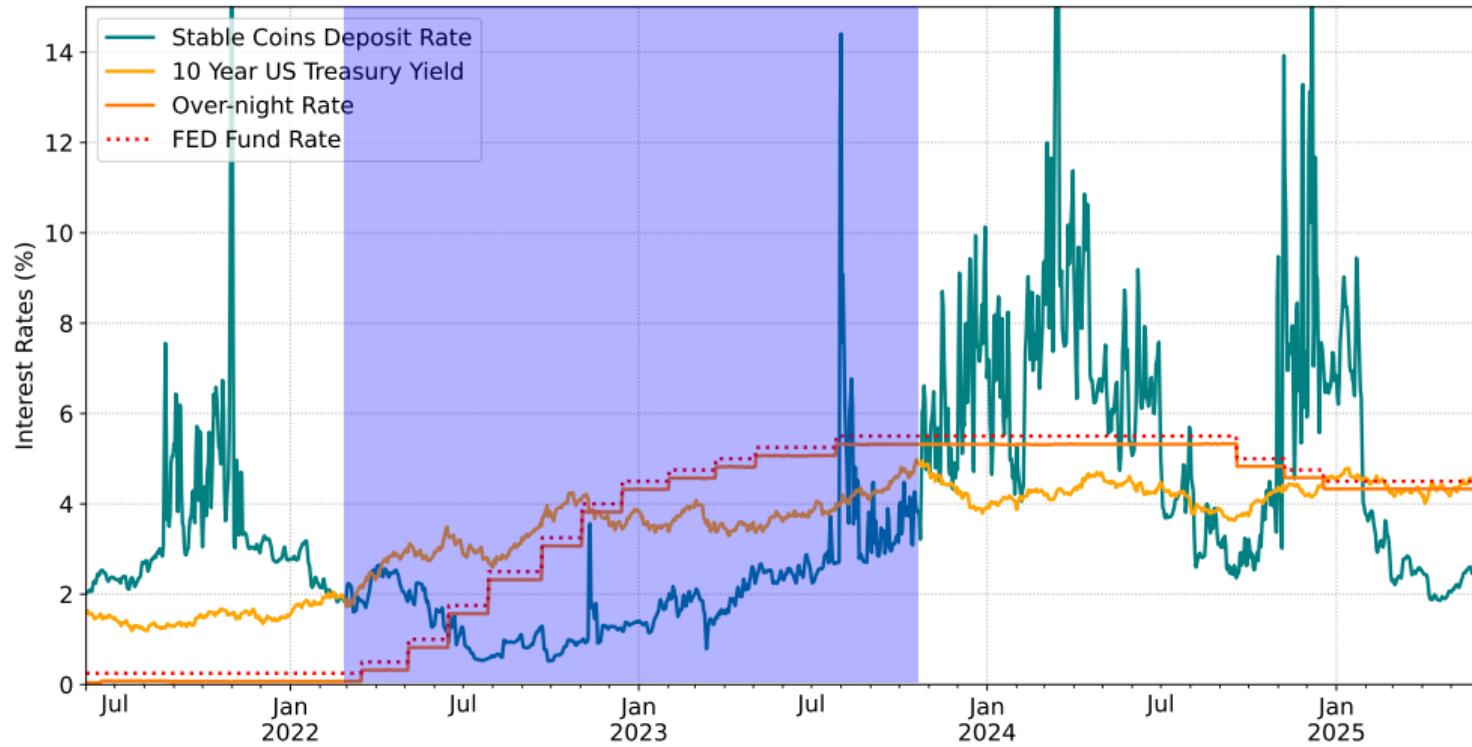
- **Imperfect competition / LP concentration**

Proxy: Transaction-level data to compute the HHI index of liquidity provision, at the stablecoin-day level

- **Limits to arbitrage / Transaction fees**

Proxy: Daily gas prices on Ethereum from Dune Analytics

- **Risks / Hacks**


Proxy: Top decile of the daily distribution of the U.S. dollar value stolen from DeFi platforms by malicious actors. Source DefiLlama.

Method: Interact risk-free rate and each factor

Passthrough Heterogeneity - Results

	(1)	(2)	(3)	(4)
Dep. Variable	DeFi Rate	DeFi Rate	DeFi Rate	DeFi Rate
Risk-free	0.31*** (6.43)	0.31*** (6.68)	0.33*** (8.13)	0.31*** (6.26)
Risk-free \times High-Concentration		0.11* (1.67)		
High-Concentration		0.04 (0.74)		
Risk-free \times High-Gas			-0.32*** (-3.07)	
High-Gas			-0.36 (-1.28)	
Risk-free \times High-Hacking				-0.09*** (-2.85)
High-Hacking				-0.09 (-0.56)

Why are DeFi rates lower than the risk-free rate?

Agents Heterogeneity - TradFy Friction

- We introduce a **friction** to explain periods with DeFi rates lower than the risk-free
- We assume a fraction μ of LPs has to pay a tax τ to move from DeFi to TradFi
- Further, τ is heterogeneous across the constrained agents
- Solving for the supply curve under this friction, we get that:
 1. It is possible to observe $\rho < \rho^*$ for prolonged periods
(some LPs prefer to keep lending rather than getting the tax-adjusted risk-free)
 2. During periods with $\rho < \rho^*$, the passthrough of monetary policy is positive but smaller in magnitude (for the same reason as above)

Agents Heterogeneity - Main Results

	(1)	(2)	(3)	(4)	(5)	(6)
Dep. Variable	Deposit Rate	Deposit Rate	Deposit Rate	Deposit Rate	Deposit Rate	Deposit Rate
Subset	$\rho < \rho^*$	$\rho > \rho^*$	$\rho < \rho^*$	$\rho > \rho^*$	$\rho < \rho^*$	$\rho > \rho^*$
Risk-free	0.29*** (4.48)	1.05*** (7.36)	0.34*** (4.91)	0.97*** (6.34)	0.31*** (3.62)	0.96*** (7.73)
Liquidation Risk	Yes	Yes	Yes	Yes	Yes	Yes
Crypto Controls			Yes	Yes	Yes	Yes
Market Controls					Yes	Yes
Deposit Rate (t-1)	0.28*** (5.63)	0.47*** (4.96)	0.28*** (5.78)	0.41*** (4.87)	0.25*** (4.85)	0.41*** (4.77)
Intercept	0.71*** (2.68)	-0.53*** (-3.06)	0.28 (0.67)	-1.89*** (-5.83)	-2.39** (-2.56)	-1.61* (-1.76)
Observations	2,293	2,519	2,293	2,519	2,293	2,519
R-squared	0.74	0.49	0.74	0.51	0.77	0.52
SEs clustering:	Coin and Day	Coin and Day	Coin and Day	Coin and Day	Coin and Day	Coin and Day

Leverage Demand

- How can we explain those large spikes in the DeFi rates?
- As noted, DeFi lending is mainly used to take leverage
- If demand for leverage moves and supply does not react immediately, this could lead to high volatility in DeFi rates
- We construct a proxy for the intensity of leverage demand using perpetual futures (from Binance)
- Those are determined by relative demand for long and short positions

Leverage Demand - Results

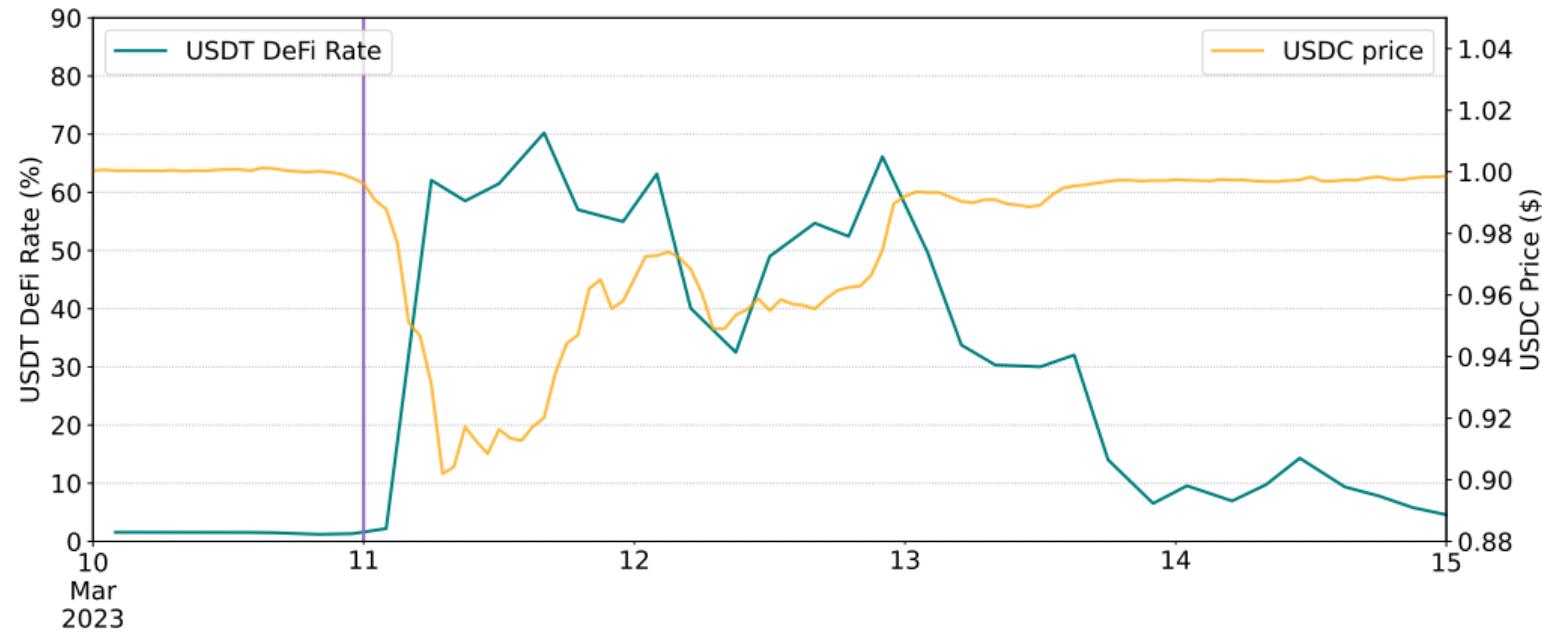
	(1)	(2)	(3)	(4)
Dep. Variable	DeFi Rate	DeFi Rate	DeFi Rate	DeFi Rate
Risk-free	0.24*** (5.32)	0.26*** (6.52)	0.22*** (6.08)	0.21*** (5.48)
BTC Funding Rate	0.01*** (5.03)			
ETH Funding Rate		0.01*** (3.25)		
BTC Funding Rate (lagged)			0.02*** (5.81)	
ETH Funding Rate (lagged)				0.02*** (7.15)
Deposit Rate (t-1)	0.54*** (7.26)	0.54*** (7.17)	0.53*** (7.10)	0.53*** (7.26)
Intercept	-2.49*** (-4.22)	-3.04*** (-4.93)	-2.39*** (-4.67)	-2.67*** (-4.89)

DeFi Rates are increasing in leverage demand

TECH

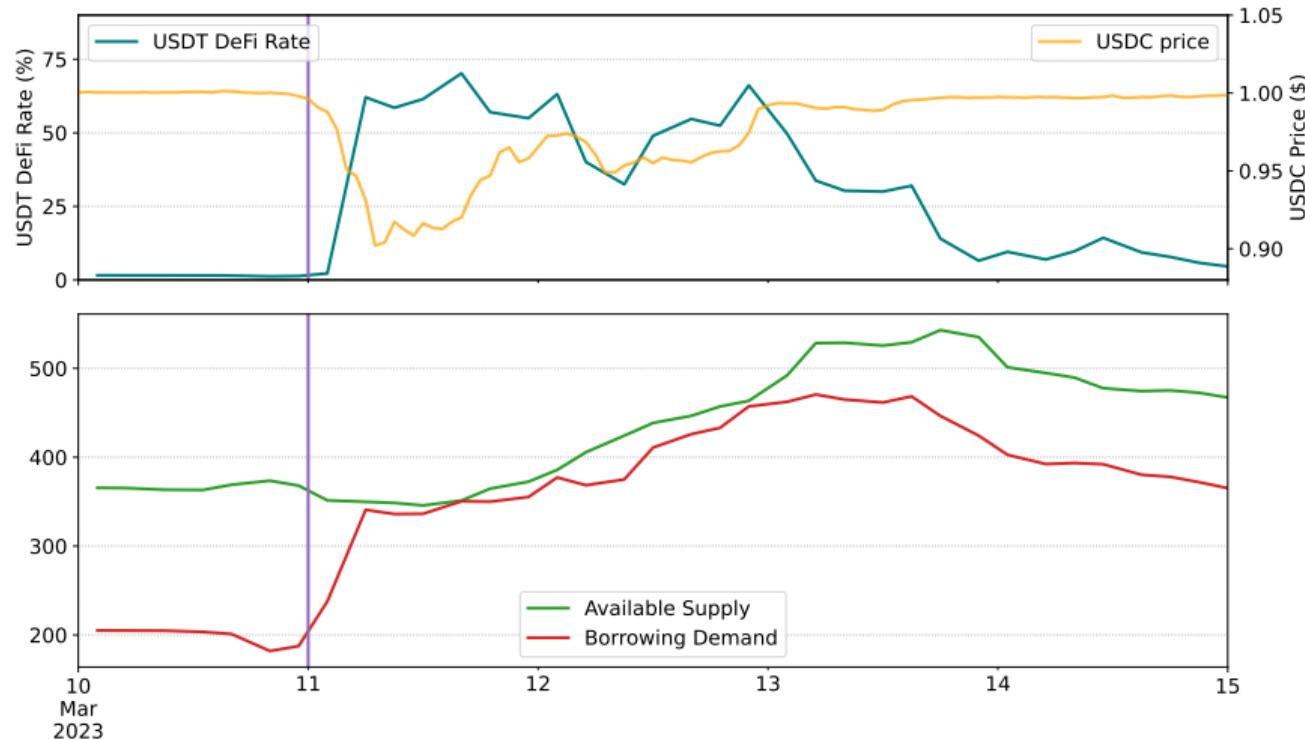
Stablecoin USDC breaks dollar peg after firm reveals it has \$3.3 billion in SVB exposure

PUBLISHED SAT, MAR 11 2023 11:03 AM EST | UPDATED SAT, MAR 11 2023 8:52 PM EST

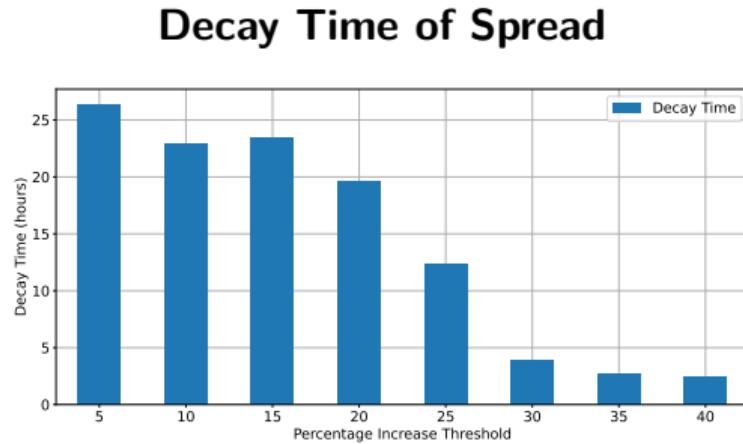


Ashley Capoot
[@IN/ASHLEY-CAPOOT/](#)

SHARE [f](#) [X](#) [in](#) [m](#)


- In March 2023, the meltdown of SVB caused a temporary de-peg of USDC
- We use this event as an exogenous shock to leverage demand for USDT

Silicon Valley Bank


- DeFi rate for USDT jumped to 70% following a large demand shock

Silicon Valley Bank – Continued

- The demand shock is absorbed over time as supply adjusts slowly

Sticky adjustments in DeFi - The role of gas prices

Figure: Spread Decay: Average hours needed for the DeFi/risk-free spread exceeding X pps to fall below X pps.

Gas Fees and Spread Persistence

Table: Regression of spread decay time (in hours) on average gas prices during the decay window. Columns report results for different spread thresholds k , including estimated coefficients (β) and R^2 values.

	Threshold	Beta	p-value	R2
0	5%	0.69***	0.00	33%
1	10%	0.38***	0.00	35%
2	15%	0.37***	0.00	50%
3	20%	0.23***	0.00	51%
4	25%	0.12***	0.00	33%
5	30%	0.03*	0.03	10%
6	35%	-0.00	0.93	0%
7	40%	-0.03	0.53	4%

Conclusion

- **Monetary policy is partially transmitted to DeFi rates**
 - Short-run passthrough is 0.3 / long-run between 0.5-0.7
 - But DeFi rates are driven also by other (crypto-related) factors
 - Limiting participation to TradFi creates a friction that impedes monetary policy pass-through
 - Supply appears not sufficiently reactive to large demand shocks

Conclusion

- **Monetary policy is partially transmitted to DeFi rates**
 - Short-run passthrough is 0.3 / long-run between 0.5-0.7
 - But DeFi rates are driven also by other (crypto-related) factors
 - Limiting participation to TradFi creates a friction that impedes monetary policy pass-through
 - Supply appears not sufficiently reactive to large demand shocks
- **Does it Matter for Monetary Policy?**
 - At the current size of the stablecoin market probably not
 - May become more important if stablecoins are massively adopted
 - Tokenization of Real world assets (like tokenized funds, T-bills) & larger LPs may improve the passthrough and reduce large and persistent spreads

Thanks for your attention!

