

Equilibrium Liquidity and Risk Offsetting in Decentralised Markets

Sebastian Jaimungal^{1,2}

Joint work with

Fayçal Drissi² and Xuchen Wu¹

¹ University of Toronto

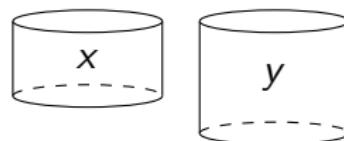
² Oxford-Man Institute for Quantitative Finance, University of Oxford

Introduction

To set the stage....

- ▷ Liquidity Pooling

- A **pool** with assets X & Y
- Available liquidity (**reserves**): x and y



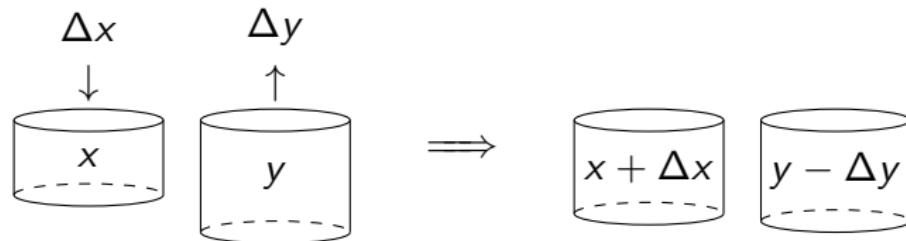
Pool reserves

Introduction

- ▷ Two types of market participants

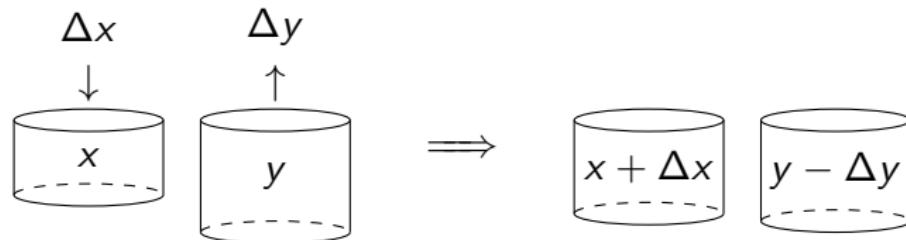
Introduction

- ▷ Two types of market participants
 - liquidity takers (**LTs**) **trade** with the pool.

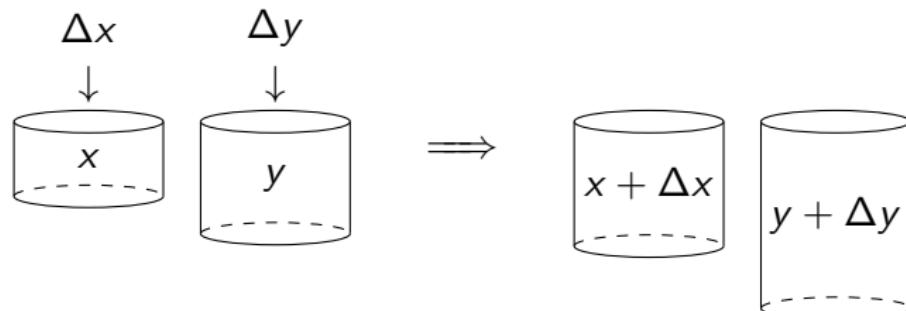


Introduction

- ▷ Two types of market participants
 - liquidity takers (**LTs**) **trade** with the pool.



- liquidity providers (**LPs**) **deposit** assets in the pool or **withdraw** assets from the pool



Introduction

A Few Key Economic Insights

1. Liquidity providers primarily manage risk by reducing liquidity, not by hedging

Introduction

A Few Key Economic Insights

1. Liquidity providers primarily manage risk by reducing liquidity, not by hedging
 - ▷ Rational, risk-averse LP facing costly replication in a CEX optimally manages risk first by reducing the amount of liquidity supplied to the DEX

Introduction

A Few Key Economic Insights

1. Liquidity providers primarily manage risk by reducing liquidity, not by hedging
 - ▷ Rational, risk-averse LP facing costly replication in a CEX optimally manages risk first by reducing the amount of liquidity supplied to the DEX
 - ▷ only second by dynamically offsetting inventory risk in the CEX.

Introduction

A Few Key Economic Insights

1. Liquidity providers primarily manage risk by reducing liquidity, not by hedging
 - ▷ Rational, risk-averse LP facing costly replication in a CEX optimally manages risk first by reducing the amount of liquidity supplied to the DEX
 - ▷ only second by dynamically offsetting inventory risk in the CEX.
 - ▷ As risk aversion increases relative to CEX trading costs, equilibrium DEX liquidity falls, and beyond a threshold, liquidity provision may cease entirely (market shutdown).

Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP performance or market depth

Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP performance or market depth
 - ▷ While informed LPs can benefit from private signals about future prices, the effect is non-monotonic.

Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP performance or market depth
 - ▷ While informed LPs can benefit from private signals about future prices, the effect is non-monotonic.
 - ▷ Moderate signals increase liquidity supply and profitability

Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP performance or market depth
 - ▷ While informed LPs can benefit from private signals about future prices, the effect is non-monotonic.
 - ▷ Moderate signals increase liquidity supply and profitability
 - ▷ Strong signals induce the LP to withdraw liquidity because exploiting the information requires intensive and costly CEX trading

Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP performance or market depth
 - ▷ While informed LPs can benefit from private signals about future prices, the effect is non-monotonic.
 - ▷ Moderate signals increase liquidity supply and profitability
 - ▷ Strong signals induce the LP to withdraw liquidity because exploiting the information requires intensive and costly CEX trading
 - ▷ This results in thinner DEX markets and lower volumes for uninformed traders.

Introduction

A Few Key Economic Insights

3. The viability of DEX liquidity hinges on the elasticity of uninformed demand, not just volatility

Introduction

A Few Key Economic Insights

3. The viability of DEX liquidity hinges on the elasticity of uninformed demand, not just volatility
 - ▷ The sustainability of liquidity provision depends critically on the profitability and elasticity of noise trader demand

Introduction

A Few Key Economic Insights

3. The viability of DEX liquidity hinges on the elasticity of uninformed demand, not just volatility
 - ▷ The sustainability of liquidity provision depends critically on the profitability and elasticity of noise trader demand
 - ▷ Higher arrival rates or lower price sensitivity of uninformed traders support deeper liquidity

Introduction

A Few Key Economic Insights

3. The viability of DEX liquidity hinges on the elasticity of uninformed demand, not just volatility
 - ▷ The sustainability of liquidity provision depends critically on the profitability and elasticity of noise trader demand
 - ▷ Higher arrival rates or lower price sensitivity of uninformed traders support deeper liquidity
 - ▷ ... even in volatile markets, whereas high fundamental volatility alone can destroy liquidity when fee revenue cannot compensate for adverse selection and hedging costs.

Introduction

- ▷ Constant Function Markets (CFMs)
 - ▷ A **trading function** $f(x, y)$ defines pool state before and after LT/LP trade.

Introduction

- ▷ Constant Function Markets (CFMs)
 - ▷ A **trading function** $f(x, y)$ defines pool state before and after LT/LP trade.
- ▷ LTs and LPs
 - ▷ LTs send (receive) a quantity Δy of Y . They receive (send) a quantity Δx of X s.t.

$$f(x, y) = f(x \mp \Delta x, y \pm \Delta y) = \kappa^2 \quad \leftarrow \quad \text{Depth}$$

Introduction

- ▷ **Constant Function Markets (CFMs)**
 - ▷ A **trading function** $f(x, y)$ defines pool state before and after LT/LP trade.
- ▷ **LTs and LPs**
 - ▷ LTs send (receive) a quantity **Δy** of Y . They receive (send) a quantity **Δx** of X s.t.

$$f(x, y) = f(x \mp \Delta x, y \pm \Delta y) = \kappa^2 \quad \leftarrow \quad \text{Depth}$$

- ▷ LPs change the depth but do not change prices (f is increasing in both variables):

$$f(x + \Delta x, y + \Delta y) = K^2 > f(x, y) = \kappa^2$$

Introduction

- ▷ **Constant Function Markets (CFMs)**
 - ▷ A **trading function** $f(x, y)$ defines pool state before and after LT/LP trade.
- ▷ **LTs and LPs**
 - ▷ LTs send (receive) a quantity Δy of Y . They receive (send) a quantity Δx of X s.t.

$$f(x, y) = f(x \mp \Delta x, y \pm \Delta y) = \kappa^2 \quad \leftarrow \quad \text{Depth}$$

- ▷ LPs change the depth but do not change prices (f is increasing in both variables):

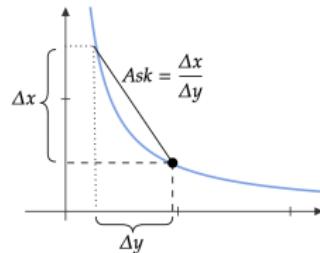
$$f(x + \Delta x, y + \Delta y) = K^2 > f(x, y) = \kappa^2$$

- ▷ **Level function (bonding curve)**
 - ▷ $f(x, y) = \kappa^2 \iff x = \varphi(\kappa, y)$.
 - ▷ **bonding curves** map reserves in Y to reserves in X .
 - ▷ They define price impact and execution prices.

Introduction

Price of liquidity: Bid/Ask for Δy

$$\text{Ask} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}$$

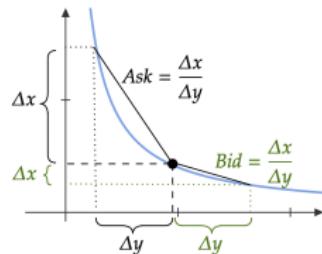


Introduction

Price of liquidity: Bid/Ask for Δy

$$\text{Ask} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}$$

$$\text{Bid} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y) - \varphi(y + \Delta y)}{\Delta y}.$$

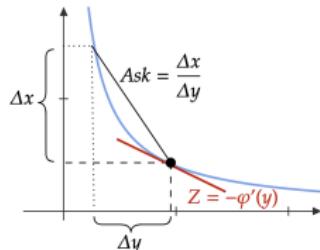


Introduction

Price of liquidity: Bid/Ask for Δy

$$\text{Ask} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}$$

$$\text{Bid} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y) - \varphi(y + \Delta y)}{\Delta y}.$$



Marginal price:

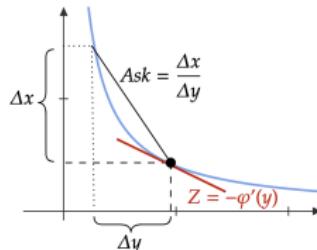
$$\underbrace{\frac{\varphi(y + \Delta y) - \varphi(y)}{\Delta y}}_{\text{bid price}} \xrightarrow{\Delta y \rightarrow 0} \underbrace{-\varphi'(y)}_{\text{marginal price}}$$

Introduction

Price of liquidity: Bid/Ask for Δy

$$\text{Ask} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}$$

$$\text{Bid} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y) - \varphi(y + \Delta y)}{\Delta y}.$$



Marginal price:

$$\underbrace{\frac{\varphi(y + \Delta y) - \varphi(y)}{\Delta y}}_{\text{bid price}} \xrightarrow{\Delta y \rightarrow 0} \underbrace{-\varphi'(y)}_{\text{marginal price}}$$

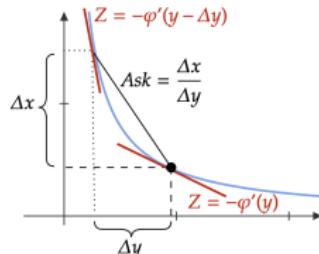
$$\xleftarrow{0 \leftarrow -\Delta y} \underbrace{\frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}}_{\text{ask price}}$$

Introduction

Price of liquidity: Bid/Ask for Δy

$$\text{Ask} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}$$

$$\text{Bid} = \frac{\Delta x}{\Delta y} = \frac{\varphi(y) - \varphi(y + \Delta y)}{\Delta y}.$$



Marginal price:

$$\underbrace{\frac{\varphi(y + \Delta y) - \varphi(y)}{\Delta y}}_{\text{bid price}} \xrightarrow{\Delta y \rightarrow 0} \underbrace{-\varphi'(y)}_{\text{marginal price}}$$

$$\xleftarrow{0 \leftarrow \Delta y} \underbrace{\frac{\varphi(y - \Delta y) - \varphi(y)}{\Delta y}}_{\text{ask price}}$$

Price impact for quantity Δy :

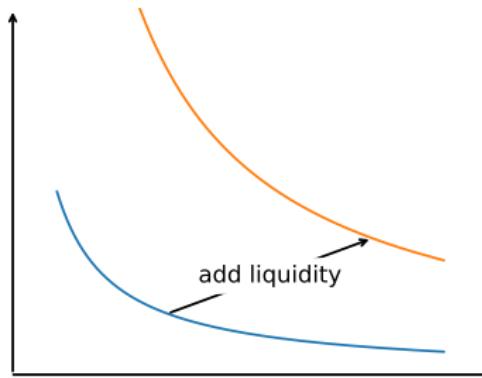
$$-\varphi'(y + \Delta y) \xleftarrow{\text{sell}} \underbrace{-\varphi'(y)}_{\text{marginal price}} \xrightarrow{\text{buy}} -\varphi'(y - \Delta y)$$

Introduction

The **aggregate position** of **LPs** determine the **price of liquidity** and **price dynamics**

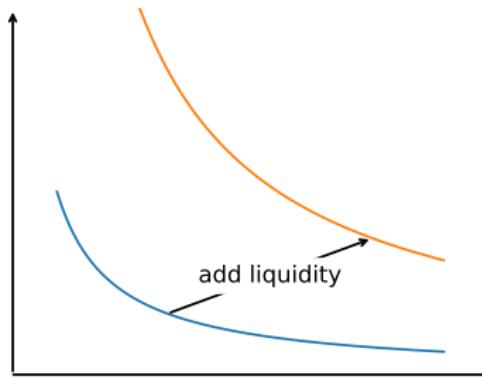
Introduction

The **aggregate position** of LPs determine the **price of liquidity** and **price dynamics**



Introduction

The **aggregate position** of LPs determine the **price of liquidity** and **price dynamics**



We consider a representative Liquidity provider (RLP)... what is the **“optimal”** level of liquidity to provide?

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous**

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.
- ▷ **Endogenous** liquidity reserves ultimately **drive DEX trading volumes...**

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.
- ▷ **Endogenous** liquidity reserves ultimately **drive DEX trading volumes**... not the other way around.

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.
- ▷ **Endogenous** liquidity reserves ultimately **drive DEX trading volumes**... not the other way around.
- ▷ The literature also overlooks practical realities

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.
- ▷ **Endogenous** liquidity reserves ultimately **drive DEX trading volumes**... not the other way around.
- ▷ The literature also overlooks practical realities such as CEX **trading costs**,

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.
- ▷ **Endogenous** liquidity reserves ultimately **drive DEX trading volumes**... not the other way around.
- ▷ The literature also overlooks practical realities such as CEX **trading costs, risk preferences**,

Literature

Literature is vast, but falls short in several ways...

- ▷ Existing works treats trading volume and liquidity reserves as **exogenous** → missing key economic feedbacks.
- ▷ Liquidity provision risks, risk-offsetting costs, and liquidity-demand elasticity jointly determine how much liquidity LPs supply.
- ▷ **Endogenous** liquidity reserves ultimately **drive DEX trading volumes**... not the other way around.
- ▷ The literature also overlooks practical realities such as CEX **trading costs, risk preferences**, and LPs' strategic use of **private information**.

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP
 - who sets the liquidity in the pool

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP
 - who sets the liquidity in the pool
 - ▷ Noise liquidity takers (noise LTs)

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP
 - who sets the liquidity in the pool
 - ▷ Noise liquidity takers (noise LTs)
 - who trade for exogenous reasons

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP
 - who sets the liquidity in the pool
 - ▷ Noise liquidity takers (noise LTs)
 - who trade for exogenous reasons
 - ▷ Arbitrageurs

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP
 - who sets the liquidity in the pool
 - ▷ Noise liquidity takers (noise LTs)
 - who trade for exogenous reasons
 - ▷ Arbitrageurs
 - who align the CEX price with the DEX's

Problem Formulation

- ▷ Our setting has three agent types
 - ▷ An RLP
 - who sets the liquidity in the pool
 - ▷ Noise liquidity takers (noise LTs)
 - who trade for exogenous reasons
 - ▷ Arbitrageurs
 - who align the CEX price with the DEX's

Problem Formulation

- ▷ The agents interact in three stages:

Problem Formulation

- ▷ The agents interact in three stages:
 - I: RLP chooses **reserves** to deposit in the DEX

Problem Formulation

- ▷ The agents interact in three stages:
 - I: RLP chooses **reserves** to deposit in the DEX
 - II: RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX

Problem Formulation

- ▷ The agents interact in three stages:
 - I: RLP chooses **reserves** to deposit in the DEX
 - II: RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX
 - III: dynamic **trading occurs**:

Problem Formulation

- ▷ The agents interact in three stages:
 - I: RLP chooses **reserves** to deposit in the DEX
 - II: RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX
 - III: dynamic **trading occurs**:
 - ◊ LTs with elastic demand arrive at the DEX

Problem Formulation

- ▷ The agents interact in three stages:
 - I:** RLP chooses **reserves** to deposit in the DEX
 - II:** RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX
 - III:** dynamic **trading occurs**:
 - ◊ LTs with elastic demand arrive at the DEX and optimise their trading volumes

Problem Formulation

- ▷ The agents interact in three stages:
 - I:** RLP chooses **reserves** to deposit in the DEX
 - II:** RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX
 - III:** dynamic **trading occurs**:
 - ◊ LTs with elastic demand arrive at the DEX and optimise their trading volumes
 - ◊ arbitrageurs align the DEX's marginal price with its fundamental value

Problem Formulation

- ▷ The agents interact in three stages:
 - I:** RLP chooses **reserves** to deposit in the DEX
 - II:** RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX
 - III:** dynamic **trading occurs**:
 - ◊ LTs with elastic demand arrive at the DEX and optimise their trading volumes
 - ◊ arbitrageurs align the DEX's marginal price with its fundamental value
 - ◊ RLP executes her strategy

Problem Formulation

- ▷ LP is exposed to **price risk** – despite collecting fees

Problem Formulation

- ▷ LP is exposed to **price risk** – despite collecting fees
- ▷ We assume **fundamental price F_t** satisfies

$$dF_t = \mathbf{A}_t F_t dt + \sigma F_t dW_t$$

where $\mathbf{A} = (A_t)_{t \in [0, T]}$ is a progressively measurable process
s.t. $\mathbb{E} \left[\int_0^T |A_t|^p dt \right] < \infty$ for some $p > 2$

Problem Formulation

- ▷ LP is exposed to **price risk** – despite collecting fees
- ▷ We assume **fundamental price F_t** satisfies

$$dF_t = \mathbf{A}_t F_t dt + \sigma F_t dW_t$$

where $\mathbf{A} = (A_t)_{t \in [0, T]}$ is a progressively measurable process
s.t. $\mathbb{E} \left[\int_0^T |A_t|^p dt \right] < \infty$ for some $p > 2$

- ▷ \mathbf{A} represents the LP's stochastic **private signal**, which may be observable, partially observable, or fully latent.

Problem Formulation

- ▷ LP is exposed to **price risk** – despite collecting fees
- ▷ We assume **fundamental price F_t** satisfies

$$dF_t = \mathbf{A}_t F_t dt + \sigma F_t dW_t$$

where $\mathbf{A} = (A_t)_{t \in [0, T]}$ is a progressively measurable process
s.t. $\mathbb{E} \left[\int_0^T |A_t|^p dt \right] < \infty$ for some $p > 2$

- ▷ \mathbf{A} represents the LP's stochastic **private signal**, which may be observable, partially observable, or fully latent.
- ▷ Arbitrageurs continuously align DEX and CEX price, so that

$$F_t = -\partial_1 \varphi(Y_t, \kappa)$$

Problem Formulation

- ▷ LP is exposed to **price risk** – despite collecting fees
- ▷ We assume **fundamental price F_t** satisfies

$$dF_t = \mathbf{A}_t F_t dt + \sigma F_t dW_t$$

where $\mathbf{A} = (A_t)_{t \in [0, T]}$ is a progressively measurable process
s.t. $\mathbb{E} \left[\int_0^T |A_t|^p dt \right] < \infty$ for some $p > 2$

- ▷ \mathbf{A} represents the LP's stochastic **private signal**, which may be observable, partially observable, or fully latent.
- ▷ Arbitrageurs continuously align DEX and CEX price, so that

$$F_t = -\partial_1 \varphi(Y_t, \kappa)$$

- ▷ We make assumptions s.t.

$$F_t = -\partial_1 \varphi(Y_t, \kappa) \iff Y_t = h(F_t, \kappa).$$

Problem Formulation

- ▷ The dynamics of the value of the DEX reserves in units of the reference asset X are

$$\begin{aligned} d(X_t + Y_t F_t) \\ = Y_t dF_t - \underbrace{\frac{1}{2} \partial_{11} \varphi(h(F_t, \kappa), \kappa) (\partial_1 h(F_t, \kappa))^2 \sigma^2 F_t^2 dt}_{\text{loss-versus-rebalancing (LVR)}} \end{aligned}$$

Problem Formulation

- ▷ The dynamics of the value of the DEX reserves in units of the reference asset X are

$$\begin{aligned} d(X_t + Y_t F_t) \\ = Y_t dF_t - \underbrace{\frac{1}{2} \partial_{11} \varphi(h(F_t, \kappa), \kappa) (\partial_1 h(F_t, \kappa))^2 \sigma^2 F_t^2 dt}_{\text{loss-versus-rebalancing (LVR)}} \end{aligned}$$

- **LVR** is a type of convexity cost... commonly interpreted as a measure of adverse selection costs in DEX

Problem Formulation

- ▷ The dynamics of the value of the DEX reserves in units of the reference asset X are

$$\begin{aligned} d(X_t + Y_t F_t) \\ = Y_t dF_t - \underbrace{\frac{1}{2} \partial_{11} \varphi(h(F_t, \kappa), \kappa) (\partial_1 h(F_t, \kappa))^2 \sigma^2 F_t^2 dt}_{\text{loss-versus-rebalancing (LVR)}} \end{aligned}$$

- **LVR** is a type of convexity cost... commonly interpreted as a measure of adverse selection costs in DEX
- ▷ LPs who short a replication of their DEX position corresponds to offsetting the first term

Problem Formulation

- ▷ The dynamics of the value of the DEX reserves in units of the reference asset X are

$$\begin{aligned} d(X_t + Y_t F_t) \\ = Y_t dF_t - \underbrace{\frac{1}{2} \partial_{11} \varphi(h(F_t, \kappa), \kappa) (\partial_1 h(F_t, \kappa))^2 \sigma^2 F_t^2 dt}_{\text{loss-versus-rebalancing (LVR)}} \end{aligned}$$

- **LVR** is a type of convexity cost... commonly interpreted as a measure of adverse selection costs in DEX
- ▷ LPs who short a replication of their DEX position corresponds to offsetting the first term ... thus exposing the LP to LVR

Problem Formulation

- ▷ The dynamics of the value of the DEX reserves in units of the reference asset X are

$$\begin{aligned} d(X_t + Y_t F_t) \\ = Y_t dF_t - \underbrace{\frac{1}{2} \partial_{11} \varphi(h(F_t, \kappa), \kappa) (\partial_1 h(F_t, \kappa))^2 \sigma^2 F_t^2 dt}_{\text{loss-versus-rebalancing (LVR)}} \end{aligned}$$

- **LVR** is a type of convexity cost... commonly interpreted as a measure of adverse selection costs in DEX
- ▷ LPs who short a replication of their DEX position corresponds to offsetting the first term ... thus exposing the LP to LVR
- ▷ **LVR must be compensated by fees**
 - ▷ When an LT buys Δy of Y they pay an additional fee of $\pi \Delta y F_t$

Problem Formulation

- ▷ The dynamics of the value of the DEX reserves in units of the reference asset X are

$$\begin{aligned} d(X_t + Y_t F_t) \\ = Y_t dF_t - \underbrace{\frac{1}{2} \partial_{11} \varphi(h(F_t, \kappa), \kappa) (\partial_1 h(F_t, \kappa))^2 \sigma^2 F_t^2 dt}_{\text{loss-versus-rebalancing (LVR)}} \end{aligned}$$

- **LVR** is a type of convexity cost... commonly interpreted as a measure of adverse selection costs in DEX
- ▷ LPs who short a replication of their DEX position corresponds to offsetting the first term ... thus exposing the LP to LVR
- ▷ **LVR must be compensated by fees**
 - ▷ When an LT buys Δy of Y they pay an additional fee of $\pi \Delta y F_t$
 - ▷ The cost per unit of Y is therefore

$$\frac{\varphi(Y_t - \Delta y, \kappa) - \varphi(Y_t, \kappa) + \pi \Delta y F_t}{\Delta y}$$

Three Stages

- ▷ The agents interact in three stages:
 - I:** RLP chooses **reserves** to deposit in the DEX
 - II:** RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX
 - III:** dynamic **trading occurs**:
 - ◊ LTs with elastic demand arrive at the DEX and optimise their trading volumes
 - ◊ arbitrageurs align the DEX's marginal price with its fundamental value
 - ◊ RLP executes her strategy

Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees

Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** V

Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** V
- ▷ if $V > 0$ and LT wishes to **buy** a quantity $\delta > 0$ of asset Y , her execution price is

$$\frac{1}{\delta} (\varphi(Y_t - \delta, \kappa) - \varphi(Y_t, \kappa) + \pi \delta F_t) \approx F_t + \pi F_t + \frac{1}{2} \delta \partial_{11} \varphi(Y_t, \kappa)$$

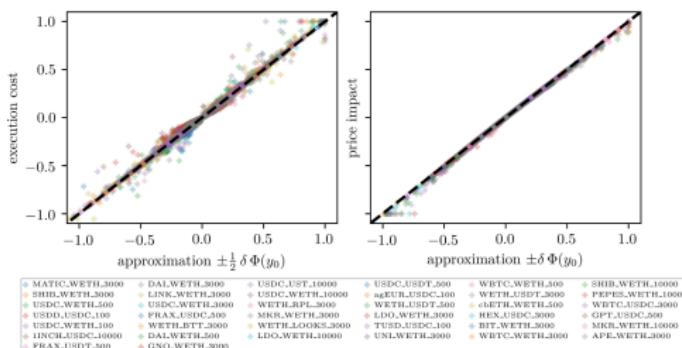
Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** V
- ▷ if $V < 0$ and LT wishes to **sell** a quantity $\delta > 0$ of asset Y , her execution price is

$$\frac{1}{\delta} (\varphi(Y_t, \kappa) - \varphi(Y_t + \delta, \kappa) - \pi \delta F_t) \approx F_t - \pi F_t - \frac{1}{2} \delta \partial_{11} \varphi(Y_t, \kappa)$$

Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** \vee
- ▷ Approximation is accurate for such markets...



Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** V

- ▷ Assign a utility of $(1 + V)F_t$ for holding the asset

Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** V
- ▷ Determines optimal δ to trade by optimizing

$$\delta (|V| - \pi) F_t - \frac{1}{2} \delta^2 \partial_{11} \varphi(Y_t, \kappa),$$

Three Stages — Stage III

- ▷ At stage III — LTs arrive
 - ▷ **Arbitrageurs align** the DEX and CEX **price** — we ignore their fees
 - ▷ **noise LTs** arrive (at Poisson times) with **elastic demand**
 - ▷ arrive with **private utility** V
- ▷ Determines optimal δ to trade by optimizing

$$\delta (|V| - \pi) F_t - \frac{1}{2} \delta^2 \partial_{11}\varphi(Y_t, \kappa),$$

...optimal is

$$\delta_t^* = F_t \frac{|V| - \pi}{\partial_{11}\varphi(Y_t, \kappa)}$$

- ▷ The nLTs generate **stochastic fees** for the LP, worth

$$\mathbb{E} \left[\int_0^T \pi \delta_t^* F_t dN_t \right] = \mathbb{E} \left[\int_0^T \frac{\lambda \pi (v - \pi) F_t^2}{\partial_{11}\varphi(h(F_t, \kappa), \kappa)} dt \right]$$

Three Stages

- ▷ The agents interact in three stages:

I: RLP chooses **reserves** to deposit in the DEX

II: RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX

III: dynamic **trading occurs**:

- ◊ LTs with elastic demand arrive at the DEX and optimise their trading volumes
- ◊ arbitrageurs align the DEX's marginal price with its fundamental value
- ◊ RLP executes her strategy

Three Stages — Stage II

- ▷ LP trading strategy for a given κ

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP **manages risk** and exploits **trading signals**

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP **manages risk** and exploits **trading signals**
- ▷ LP **trades** in the **CEX** to **maximise her total wealth** (DEX + CEX) subject to risk constraints

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP **manages risk** and exploits **trading signals**
- ▷ LP **trades** in the **CEX** to **maximise her total wealth** (DEX + CEX) subject to risk constraints
- ▷ Trading in the CEX induces **price impact**

$$S_t^\nu = F_t + I_t^\nu,$$

with

$$I_t^\nu = \int_0^t (c \nu_s - \beta I_s^\nu) \, ds$$

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP **manages risk** and exploits **trading signals**
- ▷ LP **trades** in the **CEX** to **maximise her total wealth** (DEX + CEX) subject to risk constraints
- ▷ Trading in the CEX induces **price impact**

$$S_t^\nu = F_t + I_t^\nu,$$

with

$$I_t^\nu = \int_0^t (c \nu_s - \beta I_s^\nu) \, ds$$

- ▷ LP's **DEX reserves** in asset Y satisfies

$$dY_t = G_t F_t \, dt + \sigma \partial_1 h(F_t, \kappa) F_t \, dW_t$$

where

$$G_t := \partial_1 h(F_t, \kappa) A_t + \frac{\sigma^2}{2} \partial_{11} h(F_t, \kappa) F_t$$

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP's DEX reserves in asset Y satisfies

$$dY_t = G_t F_t dt + \sigma \partial_1 h(F_t, \kappa) F_t dW_t$$

where

$$G_t := \partial_1 h(F_t, \kappa) A_t + \frac{\sigma^2}{2} \partial_{11} h(F_t, \kappa) F_t$$

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP's DEX reserves in asset Y satisfies

$$dY_t = G_t F_t dt + \sigma \partial_1 h(F_t, \kappa) F_t dW_t$$

where

$$G_t := \partial_1 h(F_t, \kappa) A_t + \frac{\sigma^2}{2} \partial_{11} h(F_t, \kappa) F_t$$

- ▷ LP's exposure in the DEX has value

$$L_t^\nu := \underbrace{\int_0^t \Pi(F_u, \kappa) du}_{\text{fee revenue}} + \overbrace{X_t + Y_t S_t^\nu}^{\text{MtM liquidity value}}$$

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP trades continuously in the CEX and holds inventory

$$Q_t^\nu = Q_0 + \int_0^t \nu_s \, ds$$

Three Stages — Stage II

- ▷ LP trading strategy for a given κ
- ▷ LP trades continuously in the CEX and holds inventory

$$Q_t^\nu = Q_0 + \int_0^t \nu_s \, ds$$

- ▷ LP's overall criterion is

$$\begin{aligned} J[\nu] &:= \mathbb{E} \left[L_T^\nu + Q_T^\nu S_T^\nu - \int_0^T (S_t^\nu + \eta \nu_t) \nu_t \, dt - \frac{\phi}{2} \int_0^T (Q_t^\nu + Y_t)^2 \, dt \right] \\ &= \mathbb{E} \left[\underbrace{(Y_T + Q_T^\nu) S_T^\nu}_{\text{combined CEX-DEX position}} - \underbrace{\int_0^T (S_t^\nu + \eta \nu_t) \nu_t \, dt}_{\text{risk offsetting}} \right. \\ &\quad \left. - \underbrace{\frac{\phi}{2} \int_0^T (Q_t^\nu + Y_t)^2 \, dt}_{\text{deviation penalty}} \right] + \text{const.} \end{aligned}$$

Three Stages — Stage II

Proposition

Define the symmetric bounded linear operator $\Lambda : \mathcal{A}_2 \rightarrow \mathcal{A}_2$ by

$$\Lambda := 2\eta + \beta(\mathfrak{I}^\top \mathfrak{Q} + \mathfrak{Q}^\top \mathfrak{I}) - c(\mathfrak{Q} + \mathfrak{Q}^\top) + \phi \mathfrak{Q}^\top \mathfrak{Q}$$

and $v \in \mathcal{A}_2$ by

$$v := \mathfrak{I}^\top (G F) + (c - \beta \mathfrak{I}^\top - \phi \mathfrak{Q}^\top)(Y + Q_0) + \mathfrak{Q}^\top (A F).$$

Then the objective J satisfies

$$J[\nu] = -\frac{1}{2} \langle \Lambda \nu, \nu \rangle + \langle v, \nu \rangle.$$

where the two bounded linear operators $\mathfrak{Q}, \mathfrak{I} : \mathcal{A}_2 \rightarrow \mathcal{A}_2$ are

$$(\mathfrak{Q}\nu)_t = \int_0^t \nu_s \, ds \quad \text{and} \quad (\mathfrak{I}\nu)_t = c \int_0^t e^{\beta(s-t)} \nu_s \, ds.$$

Three Stages — Stage II

Proposition

J is Gâteaux differentiable, and its Gâteaux derivative $\mathcal{D}J[\nu]$ at $\nu \in \mathcal{A}_2$ is an element of \mathcal{A}_2 and

$$\begin{aligned}\mathcal{D}J[\nu]_t &= -2\eta\nu_t + c(Y_t + Q_t^\nu) \\ &+ \mathbb{E} \left[\int_t^T (A_s F_s + c\nu_s - \beta I_s^\nu - \phi(Y_s + Q_s^\nu)) \, ds \middle| \mathcal{F}_t \right] \\ &+ c e^{t\beta} \mathbb{E} \left[\int_t^T e^{-s\beta} (G_s F_s - \beta (Y_s + Q_s^\nu)) \, ds \middle| \mathcal{F}_t \right].\end{aligned}$$

Three Stages — Stage II

Theorem (FBSDE system)

The Gâteaux derivative $DJ[\cdot]$ vanishes at $\nu^* \in \mathcal{A}_2$ if and only if ν^* solves the FBSDE

$$\left\{ \begin{array}{l} 2\eta d\nu_t^* = (-A_t F_t + \beta I_t + (\phi + c\beta)(Y_t + Q_t) + c\beta Z_t) dt + dM_t, \\ 2\eta \nu_T^* = c(Y_T + Q_T), \\ \\ dZ_t = (\beta(Z_t + Y_t + Q_t) - G_t F_t) dt + dN_t, \\ Z_T = 0, \\ \\ dI_t = (c\nu_t^* - \beta I_t) dt, \\ I_0 = 0, \\ \\ dQ_t = \nu_t^* dt, \end{array} \right.$$

for some \mathbb{F} -martingales M and N such that $M_T, N_T \in L^2(\Omega)$.

Three Stages — Stage II

Proposition (Differential Riccati Equation)

Let (a bunch of matrices)... Suppose there exists a solution P , which is an $\mathbb{R}^{2 \times 2}$ -valued C^1 function, to the DRE

$$P'(t) + P(t) B_{11} + P(t) B_{12} P(t) - B_{21} - B_{22} P(t) = 0, \quad P(T) = G$$

Define \mathbb{R}^2 -valued processes ℓ , Ψ , and Φ in the following way:

$$\ell_t = e^{- \int_0^t (P(u) B_{12} - B_{22}) \, du} \mathbb{E} \left[L - \int_t^T e^{\int_0^s (P(u) B_{12} - B_{22}) \, du} b_s \, ds \mid \mathcal{F}_t \right],$$

$$\Phi_t = e^{\int_0^t (B_{12} P(u) + B_{11}) \, du} \left(K + \int_0^t e^{- \int_0^s (B_{12} P(u) + B_{11}) \, du} B_{12} \ell_s \, ds \right),$$

and

$$\Psi(t) = P(t) \Phi_t + \ell_t.$$

Then (Φ, Ψ) is a solution to the FBSDE with

$$\Psi_t = \begin{pmatrix} \nu_t^* \\ Z_t \end{pmatrix}, \quad \Phi_t = \begin{pmatrix} I_t \\ Q_t \end{pmatrix}.$$

Moreover, the DRE admits a unique solution.

Three Stages — Stage II

Proposition (No Transient Impact)

Assume $c = 0$. The optimal hedging strategy in the CEX is

$$\nu_t = P(t) \left(Q_0 \tilde{P}(0, t) + \int_0^t \tilde{P}(s, t) \ell_s \, ds \right) + \ell_t,$$

where

$$\ell_t = \frac{1}{2\eta} \mathbb{E} \left[\int_t^T \tilde{P}(t, s) (A_s F_s - \phi Y_s) \, ds \middle| \mathcal{F}_t \right],$$

and

$$P(t) = \sqrt{\frac{\phi}{2\eta}} \tanh \left(\sqrt{\frac{\phi}{2\eta}} (t - T) \right) \quad \text{and} \quad \tilde{P}(s, t) = \frac{\cosh \left(\sqrt{\frac{\phi}{2\eta}} (t - T) \right)}{\cosh \left(\sqrt{\frac{\phi}{2\eta}} (s - T) \right)}.$$

Three Stages

- ▷ The agents interact in three stages:

I: RLP chooses **reserves** to deposit in the DEX

II: RLP determines a **dynamic strategy** to (partially) offset exposure in the CEX

III: dynamic **trading occurs**:

- ◊ LTs with elastic demand arrive at the DEX and optimise their trading volumes
- ◊ arbitrageurs align the DEX's marginal price with its fundamental value
- ◊ RLP executes her strategy

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.
- ▷ For **uniswap** — constant product market, i.e., $f(x, y) = xy$ — we have explicit (but not very pretty 😊) formulae for κ^*

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.
- ▷ For **uniswap** — constant product market, i.e., $f(x, y) = xy$ — we have explicit (but not very pretty 😊) formulae for κ^*
- ▷ Key parameters are:

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.
- ▷ For **uniswap** — constant product market, i.e., $f(x, y) = xy$ — we have explicit (but not very pretty 😊) formulae for κ^*
- ▷ Key parameters are:
 - ▷ aversion ϕ

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.
- ▷ For **uniswap** — constant product market, i.e., $f(x, y) = xy$ — we have explicit (but not very pretty 😊) formulae for κ^*
- ▷ Key parameters are:
 - ▷ aversion ϕ
 - ▷ volatility σ

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.
- ▷ For **uniswap** — constant product market, i.e., $f(x, y) = xy$ — we have explicit (but not very pretty 😊) formulae for κ^*
- ▷ Key parameters are:
 - ▷ aversion ϕ
 - ▷ volatility σ
 - ▷ CEX trading cost η

Three Stages — Stage I

- ▷ In this stage, the LP sets the liquidity level by maximising

$$\mathbb{E} \left[L_T^{\nu_\kappa^*} + Q_T^{\nu^*} S_T^{\nu_\kappa^*} - \int_0^T \left(S_t^{\nu_\kappa^*} + \eta \nu_{\kappa,t}^* \right) \nu_{\kappa,t}^* dt - \frac{\phi}{2} \int_0^T \left(Q_t^{\nu_\kappa^*} + Y_t \right)^2 dt \right],$$

over $\kappa \in [0, \bar{\kappa}]$

- ▷ We **prove boundedness and continuity** in κ (under mild conditions) — hence a maximum exists.
- ▷ For **uniswap** — constant product market, i.e., $f(x, y) = xy$ — we have explicit (but not very pretty 😊) formulae for κ^*
- ▷ Key parameters are:
 - ▷ aversion ϕ
 - ▷ volatility σ
 - ▷ CEX trading cost η
 - ▷ profitability $\gamma = \frac{\lambda \pi (\nu - \pi)}{2}$

Three Stages — Stage I

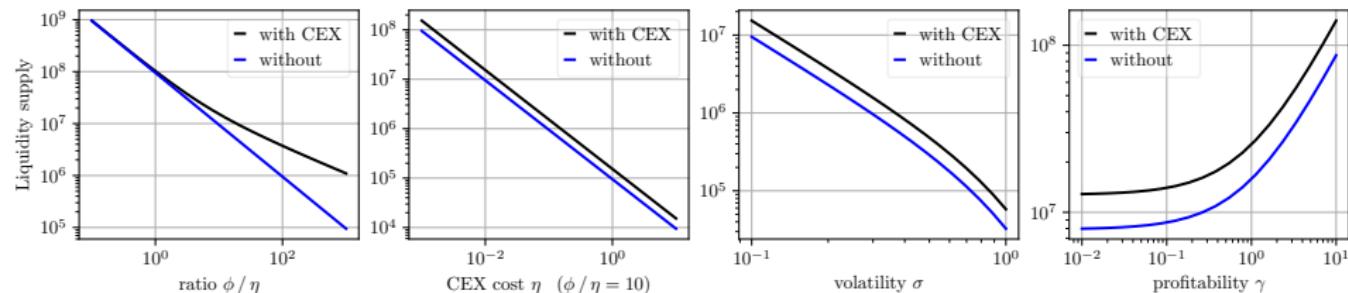


Figure: Equilibrium supply of liquidity as a function of model primitives. Default parameter values are: fee rate $\pi = 0.3\%$, volatility $\sigma = 0.1$, investment horizon $T = 1$, private signal $A = 0$, CEX trading cost $\eta = 0.01$, ratio $\beta = \phi/\eta = 10$, and profitability $\gamma = 0.2$.

Three Stages — Stage I

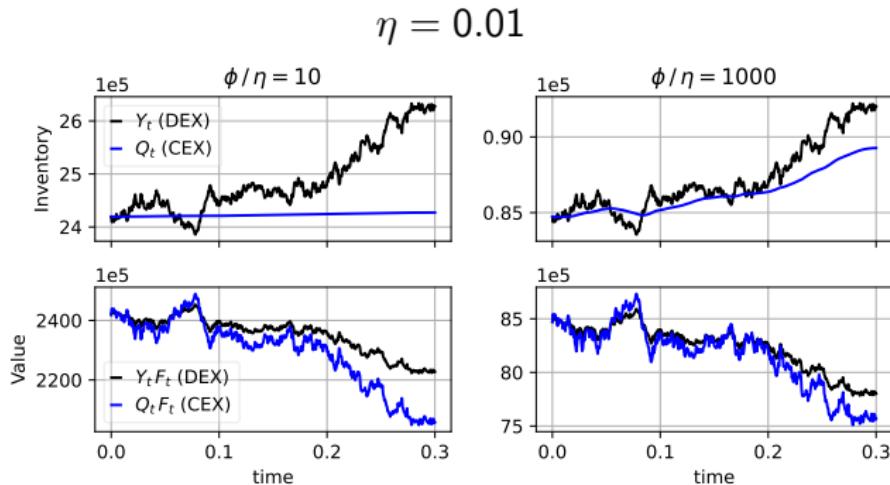


Figure: Sample path of the LP's reserves Y_t held in the DEX and the inventory Q_t held in the CEX (top panels), together with their corresponding values expressed in units of the reference asset X (bottom panels). The left panels of each figure correspond to a ratio of risk aversion to trading costs $\beta = 10$, while the right panels correspond to $\beta = 10^3$. Other default parameter values are profitability $\gamma = 0.1$, fundamental volatility $\sigma = 0.2$, and investment horizon $T = 0.3$.

Three Stages — Stage I

$$\eta = 0.1$$

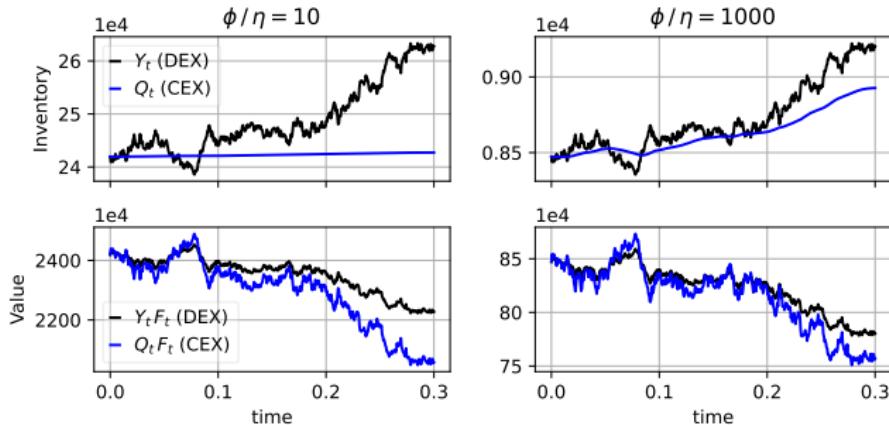


Figure: Sample path of the LP's reserves Y_t held in the DEX and the inventory Q_t held in the CEX (top panels), together with their corresponding values expressed in units of the reference asset X (bottom panels). The left panels of each figure correspond to a ratio of risk aversion to trading costs $\beta = 10$, while the right panels correspond to $\beta = 10^3$. Other default parameter values are profitability $\gamma = 0.1$, fundamental volatility $\sigma = 0.2$, and investment horizon $T = 0.3$.

Three Stages — Stage I

- When the LP executes her **optimal CEX strategy**, her change in wealth, measured in units of X , is

$$\underbrace{\int_0^T \Pi(F_t, \kappa^*) dt}_{\text{fee revenue}} + \underbrace{2 \kappa^* (F_T^{1/2} - F_0^{1/2})}_{\text{AMM position value change}} - \underbrace{\int_0^T Q_t^* dF_t}_{\text{risk offsetting}} - \underbrace{\int_0^T \eta \nu_t^*{}^2 dt}_{\text{CEX cost}},$$

Three Stages — Stage I

- When the LP executes her **optimal CEX strategy**, her change in wealth, measured in units of X , is

$$\underbrace{\int_0^T \Pi(F_t, \kappa^*) dt}_{\text{fee revenue}} + \underbrace{2\kappa^*(F_T^{1/2} - F_0^{1/2})}_{\text{AMM position value change}} - \underbrace{\int_0^T Q_t^* dF_t}_{\text{risk offsetting}} - \underbrace{\int_0^T \eta \nu_t^{*2} dt}_{\text{CEX cost}},$$

- When the LP **does not offset**, her change in wealth is

$$\underbrace{\int_0^T \Pi(F_t, \underline{\kappa}) dt}_{\text{fee revenue}} + \underbrace{2\underline{\kappa}(F_T^{1/2} - F_0^{1/2})}_{\text{AMM position value change}} - \underbrace{Q_0(F_T - F_0)}_{\text{CEX position}},$$

Three Stages — Stage I

The expected change in the value of the LP's DEX liquidity position is

$$\mathbb{E} \left[2\kappa^* (F_T^{1/2} - F_0^{1/2}) \right] = F_0^{1/2} \left(e^{-\sigma^2 T/8} - 1 \right) < 0$$

— viability of DEX liquidity provision depends on whether stage-three fee revenue, adjusted by replication costs and the proceeds from risk offsetting, cover these adverse selection costs.

Three Stages — Stage I

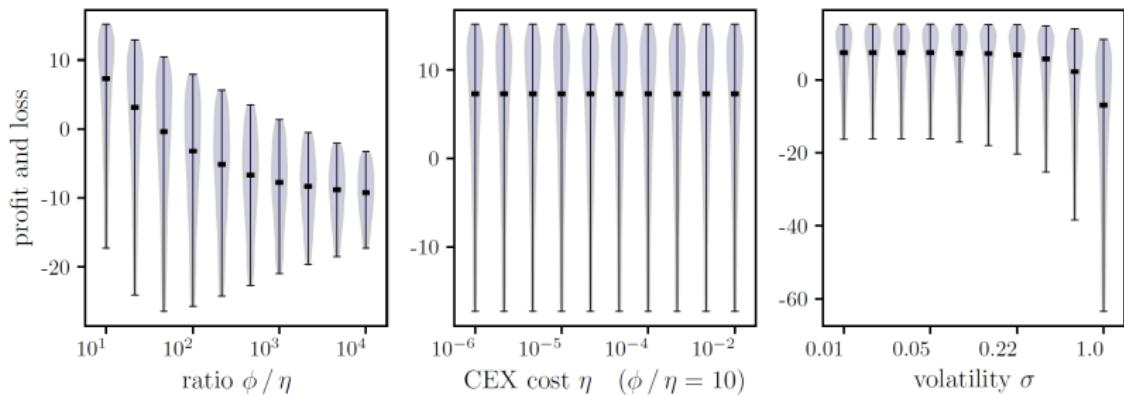


Figure: The distribution is obtained from 2000 market simulations, with the time interval discretised into 1000 steps. Default parameter values are $\sigma = 0.1$, $T = 1$, $A = 0$, $\eta = 0.01$, $\beta = 10$, and $\gamma = 0.25$.

Three Stages — Stage I

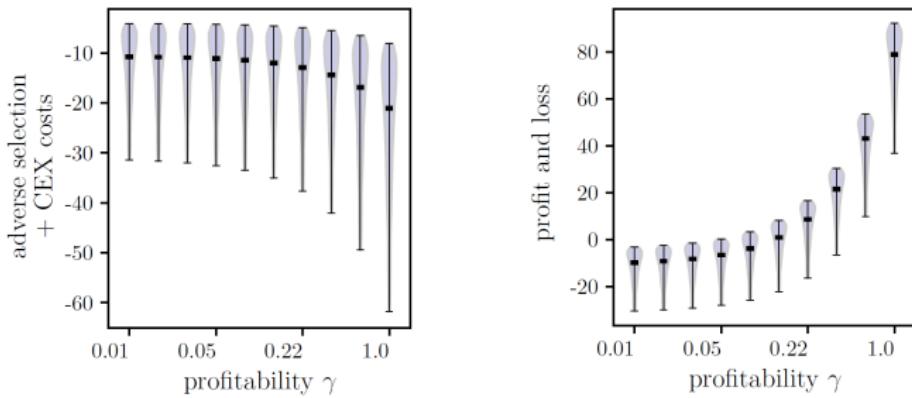


Figure: The distribution is obtained from 2000 market simulations, with the time interval discretised into 1000 steps. Default parameter values are $\sigma = 0.1$, $T = 1$, $A = 0$, $\eta = 0.01$, $\beta = 10$, and $\gamma = 0.25$.

Thank you....

...Questions & Comments?