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Fayçal Drissi2 and Xuchen Wu1

1 University of Toronto
2 Oxford-Man Institute for Quantitative Finance, University of Oxford



Introduction

To set the stage....

▷ Liquidity Pooling

- A pool with assets X & Y
- Available liquidity (reserves): x and y

x y

Pool reserves
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Introduction

▷ Two types of market participants

- liquidity takers (LTs) trade with the pool.
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- liquidity providers (LPs) deposit assets in the pool or
withdraw assets from the pool
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Introduction

A Few Key Economic Insights

1. Liquidity providers primarily manage risk by reducing liquidity,
not by hedging

▷ Rational, risk-averse LP facing costly replication in a CEX
optimally manages risk first by reducing the amount of
liquidity supplied to the DEX

▷ only second by dynamically offsetting inventory risk in the
CEX.

▷ As risk aversion increases relative to CEX trading costs,
equilibrium DEX liquidity falls, and beyond a threshold,
liquidity provision may cease entirely (market shutdown).
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Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP
performance or market depth

▷ While informed LPs can benefit from private signals about
future prices, the effect is non-monotonic.

▷ Moderate signals increase liquidity supply and profitability

▷ Strong signals induce the LP to withdraw liquidity because
exploiting the information requires intensive and costly CEX
trading

▷ This results in thinner DEX markets and lower volumes for
uninformed traders.

5 / 29



Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP
performance or market depth

▷ While informed LPs can benefit from private signals about
future prices, the effect is non-monotonic.

▷ Moderate signals increase liquidity supply and profitability

▷ Strong signals induce the LP to withdraw liquidity because
exploiting the information requires intensive and costly CEX
trading

▷ This results in thinner DEX markets and lower volumes for
uninformed traders.

5 / 29



Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP
performance or market depth

▷ While informed LPs can benefit from private signals about
future prices, the effect is non-monotonic.

▷ Moderate signals increase liquidity supply and profitability

▷ Strong signals induce the LP to withdraw liquidity because
exploiting the information requires intensive and costly CEX
trading

▷ This results in thinner DEX markets and lower volumes for
uninformed traders.

5 / 29



Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP
performance or market depth

▷ While informed LPs can benefit from private signals about
future prices, the effect is non-monotonic.

▷ Moderate signals increase liquidity supply and profitability

▷ Strong signals induce the LP to withdraw liquidity because
exploiting the information requires intensive and costly CEX
trading

▷ This results in thinner DEX markets and lower volumes for
uninformed traders.

5 / 29



Introduction

A Few Key Economic Insights

2. Private information does not monotonically improve LP
performance or market depth

▷ While informed LPs can benefit from private signals about
future prices, the effect is non-monotonic.

▷ Moderate signals increase liquidity supply and profitability

▷ Strong signals induce the LP to withdraw liquidity because
exploiting the information requires intensive and costly CEX
trading

▷ This results in thinner DEX markets and lower volumes for
uninformed traders.

5 / 29



Introduction

A Few Key Economic Insights

3. The viability of DEX liquidity hinges on the elasticity of
uninformed demand, not just volatility

▷ The sustainability of liquidity provision depends critically on
the profitability and elasticity of noise trader demand

▷ Higher arrival rates or lower price sensitivity of uninformed
traders support deeper liquidity

▷ ... even in volatile markets, whereas high fundamental
volatility alone can destroy liquidity when fee revenue cannot
compensate for adverse selection and hedging costs.
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Introduction
▷ Constant Function Markets (CFMs)

▷ A trading function f (x , y) defines pool state before and
after LT/LP trade.

▷ LTs and LPs

▷ LTs send (receive) a quantity ∆y of Y . They receive
(send) a quantity ∆x of X s.t.

f (x , y) = f (x ∓∆x, y ±∆y) = κ2 ← Depth

▷ LPs change the depth but do not change prices (f is
increasing in both variables):

f (x +∆x , y +∆y) = K 2 > f (x , y) = κ2

▷ Level function (bonding curve)

▷ f (x , y) = κ2 ⇐⇒ x = φ(κ, y).
▷ bonding curves map reserves in Y to reserves in X .
▷ They define price impact and execution prices.
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Introduction

Price of liquidity: Bid/Ask for ∆y

Ask =
∆x

∆y
=

φ(y −∆y)− φ(y)

∆y

Bid =
∆x

∆y
=

φ(y)− φ(y +∆y)

∆y
.

Marginal price:

φ(y +∆y)− φ(y)

∆y︸ ︷︷ ︸
bid price

∆y−→0−−−−−→ −φ′(y)︸ ︷︷ ︸
marginal price

0←−∆y←−−−−− φ(y −∆y)− φ(y)

∆y︸ ︷︷ ︸
ask price

Price impact for quantity ∆y :

−φ′(y +∆y)
sell←− −φ′(y)︸ ︷︷ ︸

marginal price

buy−−→ −φ′(y −∆y)
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Introduction

The aggregate position of LPs determine the price of liquidity
and price dynamics

add liquidity

We consider a representative Liquidity provider (RLP)... what is
the “optimal” level of liquidity to provide?
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Literature

Literature is vast, but falls short in several ways...

▷ Existing works treats trading volume and liquidity reserves as
exogenous

→ missing key economic feedbacks.

▷ Liquidity provision risks, risk-offsetting costs, and
liquidity-demand elasticity jointly determine how much
liquidity LPs supply.

▷ Endogenous liquidity reserves ultimately drive DEX trading
volumes... not the other way around.

▷ The literature also overlooks practical realities such as CEX
trading costs, risk preferences, and LPs’ strategic use of
private information.
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Problem Formulation

▷ Our setting has three agent types

▷ An RLP

— who sets the liquidity in the pool

▷ Noise liquidity takers (noise LTs)

— who trade for exogenous reasons

▷ Arbitrageurs

— who align the CEX price with the DEX’s
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Problem Formulation

▷ The agents interact in three stages:

I: RLP chooses reserves to deposit in the DEX

II: RLP determines a dynamic strategy to (partially) offset
exposure in the CEX

III: dynamic trading occurs:

⋄ LTs with elastic demand arrive at the DEX and
optimise their trading volumes

⋄ arbitrageurs align the DEX’s marginal price with its
fundamental value

⋄ RLP executes her strategy
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Problem Formulation
▷ LP is exposed to price risk – despite collecting fees

▷ We assume fundamental price Ft satisfies

dF t = At Ft dt + σ Ft dW t

where A = (At)t∈[0,T ] is a progressively measurable process

s.t. E
[∫ T

0 |At |p dt
]
<∞ for some p > 2

▷ A represents the LP’s stochastic private signal, which may
be observable, partially observable, or fully latent.

▷ Arbitrageurs continuously align DEX and CEX price, so that

Ft = −∂1φ(Yt , κ)

▷ We make assumptions s.t.

Ft = −∂1φ(Yt , κ) ⇐⇒ Yt = h(Ft , κ).
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where A = (At)t∈[0,T ] is a progressively measurable process

s.t. E
[∫ T

0 |At |p dt
]
<∞ for some p > 2

▷ A represents the LP’s stochastic private signal, which may
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Problem Formulation
▷ The dynamics of the value of the DEX reserves in units of the
reference asset X are

d (Xt + Yt Ft)

= Yt dF t − 1
2∂11φ(h(Ft , κ), κ) (∂1h(Ft , κ))

2 σ2 F 2
t dt︸ ︷︷ ︸

loss-versus-rebalancing (LVR)

— LVR is a type of convexity cost... commonly interpreted as
a measure of adverse selection costs in DEX

▷ LPs who short a replication of their DEX position corresponds
to offsetting the first term ... thus exposing the LP to LVR

▷ LVR must be compensated by fees
▷ When an LT buys ∆y of Y they pay an additional fee of
π∆y Ft

▷ The cost per unit of Y is therefore

φ(Yt −∆y , κ)− φ(Yt , κ) + π∆y Ft
∆y
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Three Stages

▷ The agents interact in three stages:

I: RLP chooses reserves to deposit in the DEX

II: RLP determines a dynamic strategy to (partially) offset
exposure in the CEX

III: dynamic trading occurs:

⋄ LTs with elastic demand arrive at the DEX and opti-
mise their trading volumes

⋄ arbitrageurs align the DEX’s marginal price with its
fundamental value

⋄ RLP executes her strategy
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Three Stages — Stage III

▷ At stage III — LTs arrive

▷ Arbitrageurs align the DEX and CEX price — we
ignore their fees

▷ noise LTs arrive (at Poisson times) with elastic demand

▷ arrive with private utility V

15 / 29



Three Stages — Stage III

▷ At stage III — LTs arrive

▷ Arbitrageurs align the DEX and CEX price — we
ignore their fees

▷ noise LTs arrive (at Poisson times) with elastic demand

▷ arrive with private utility V

15 / 29



Three Stages — Stage III

▷ At stage III — LTs arrive

▷ Arbitrageurs align the DEX and CEX price — we
ignore their fees

▷ noise LTs arrive (at Poisson times) with elastic demand

▷ arrive with private utility V

▷ if V > 0 and LT wishes to buy a quantity δ > 0 of asset Y , her
execution price is

1

δ
(φ(Yt − δ, κ)− φ(Yt , κ) + π δ Ft) ≈ Ft + π Ft +

1
2δ ∂11φ(Yt , κ)
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▷ At stage III — LTs arrive

▷ Arbitrageurs align the DEX and CEX price — we
ignore their fees

▷ noise LTs arrive (at Poisson times) with elastic demand

▷ arrive with private utility V

▷ Approximation is accurate for such markets...
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▷ At stage III — LTs arrive

▷ Arbitrageurs align the DEX and CEX price — we
ignore their fees

▷ noise LTs arrive (at Poisson times) with elastic demand

▷ arrive with private utility V

▷ Assign a utility of (1 + V )Ft for holding the asset
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▷ arrive with private utility V

▷ Determines optimal δ to trade by optimizing

δ
(
|V | − π

)
Ft − 1

2 δ
2 ∂11φ (Yt , κ) ,

...optimal is

δ⋆t = Ft
|V | − π

∂11φ (Yt , κ)

▷ The nLTs generate stochastic fees for the LP, worth

E
[∫ T

0
π δ⋆t Ft dNt

]
= E

[∫ T

0

λπ (v − π) F 2
t

∂11φ (h(Ft , κ), κ)
dt

]
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Three Stages

▷ The agents interact in three stages:

I: RLP chooses reserves to deposit in the DEX

II: RLP determines a dynamic strategy to (partially) offset
exposure in the CEX

III: dynamic trading occurs:

⋄ LTs with elastic demand arrive at the DEX and
optimise their trading volumes

⋄ arbitrageurs align the DEX’s marginal price with its
fundamental value

⋄ RLP executes her strategy
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Three Stages — Stage II

▷ LP trading strategy for a given κ

▷ LP manages risk and exploits trading signals

▷ LP trades in the CEX to maximise her total wealth (DEX
+ CEX) subject to risk constraints

▷ Trading in the CEX induces price impact

Sν
t = Ft + I νt ,

with

I νt =

∫ t

0
(c νs − β I νs ) ds

▷ LP’s DEX reserves in asset Y satisfies

dY t = Gt Ft dt + σ ∂1h(Ft , κ)Ft dWt

where
Gt := ∂1h(Ft , κ)At +

σ2

2 ∂11h(Ft , κ)Ft
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Three Stages — Stage II
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▷ LP’s DEX reserves in asset Y satisfies

dY t = Gt Ft dt + σ ∂1h(Ft , κ)Ft dWt

where
Gt := ∂1h(Ft , κ)At +

σ2

2 ∂11h(Ft , κ)Ft

▷ LP’s exposure in the DEX has value

Lνt :=

∫ t

0
Π(Fu, κ)du︸ ︷︷ ︸
fee revenue

+

MtM liquidity value︷ ︸︸ ︷
Xt + Yt S

ν
t
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Three Stages — Stage II

▷ LP trading strategy for a given κ

▷ LP trades continuously in the CEX and holds inventory

Qν
t = Q0 +

∫ t

0
νs ds

▷ LP’s overall criterion is

J[ν] := E

[
Lν
T + Qν

T Sν
T −

∫ T

0

(Sν
t + η νt) νt dt − ϕ

2

∫ T

0

(Qν
t + Yt)

2 dt

]

= E
[ combined CEX-DEX position︷ ︸︸ ︷

(YT + Qν
T ) S

ν
T −

risk offsetting︷ ︸︸ ︷∫ T

0

(Sν
t + η νt) νt dt

− ϕ
2

∫ T

0

(Qν
t + Yt)

2 dt︸ ︷︷ ︸
deviation penalty

]
+ const.
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Three Stages — Stage II

Proposition

Define the symmetric bounded linear operator Λ : A2 → A2 by

Λ := 2 η + β (I⊤Q+Q⊤I)− c (Q+Q⊤) + ϕQ⊤Q

and υ ∈ A2 by

υ := I⊤(G F ) + (c − β I⊤ − ϕQ⊤)(Y + Q0) +Q⊤(AF ) .

Then the objective J satisfies

J[ν] = −1
2 ⟨Λν, ν⟩+ ⟨υ, ν⟩.

where the two bounded linear operators Q , I : A2 → A2 are

(Qν)t =

∫ t

0
νs ds and (Iν)t = c

∫ t

0
eβ(s−t) νs ds .
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Three Stages — Stage II

Proposition

J is Gâteaux differentiable, and its Gâteaux derivative DJ[ν] at
ν ∈ A2 is an element of A2 and

DJ[ν]t = −2 η νt + c (Yt + Qν
t )

+ E
[∫ T

t
(As Fs + c νs − β I νs − ϕ (Ys + Qν

s )) ds

∣∣∣∣ Ft

]
+ c et β E

[∫ T

t
e−s β (Gs Fs − β (Ys + Qν

s )) ds

∣∣∣∣ Ft

]
.

20 / 29



Three Stages — Stage II

Theorem (FBSDE system)

The Gâteaux derivative DJ[·] vanishes at ν⋆ ∈ A2 if and only if ν⋆ solves the
FBSDE

2 η dν⋆
t = (−At Ft + β It + (ϕ+ c β) (Yt + Qt) + c β Zt) dt + dMt ,

2 η ν⋆
T = c (YT + QT ) ,

dZt = (β (Zt + Yt + Qt)− Gt Ft) dt + dNt ,

ZT = 0 ,

dIt = (c ν⋆
t − β It) dt,

I0 = 0 ,

dQt = ν⋆
t dt ,

for some F-martingales M and N such that MT ,NT ∈ L2(Ω).
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Three Stages — Stage II

Proposition (Differential Ricatti Equation)

Let (a bunch of matrices)... Suppose there exists a solution P, which is an
R2×2-valued C1 function, to the DRE

P′(t) + P(t)B11 + P(t)B12 P(t)− B21 − B22 P(t) = 0 , P(T ) = G

Define R2-valued processes ℓ, Ψ, and Φ in the following way:

ℓt = e−
∫ t
0 (P(u) B12−B22) du E

[
L−

∫ T

t
e
∫ s
0 (P(u) B12−B22) du bs ds

∣∣∣∣ Ft

]
,

Φt = e
∫ t
0 (B12 P(u)+B11) du

(
K +

∫ t

0
e−

∫ s
0 (B12 P(u)+B11) du B12 ℓs ds

)
,

and
Ψ(t) = P(t)Φt + ℓt .

Then (Φ,Ψ) is a solution to the FBSDE with

Ψt =

(
ν⋆t
Zt

)
, Φt =

(
It
Qt

)
.

Moreover, the DRE admits a unique solution.
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Three Stages — Stage II

Proposition (No Transient Impact)

Assume c = 0 . The optimal hedging strategy in the CEX is

νt = P(t)

(
Q0 P̃(0, t) +

∫ t

0

P̃(s, t) ℓs ds

)
+ ℓt ,

where

ℓt =
1
2 η

E
[∫ T

t

P̃(t, s) (As Fs − ϕYs)ds

∣∣∣∣ Ft

]
,

and

P(t) =
√

ϕ
2 η

tanh

(√
ϕ
2 η

(t − T )

)
and P̃(s, t) =

cosh
(√

ϕ
2 η

(t − T )
)

cosh
(√

ϕ
2 η

(s − T )
) .
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Three Stages

▷ The agents interact in three stages:

I: RLP chooses reserves to deposit in the DEX

II: RLP determines a dynamic strategy to (partially) offset
exposure in the CEX

III: dynamic trading occurs:

⋄ LTs with elastic demand arrive at the DEX and
optimise their trading volumes

⋄ arbitrageurs align the DEX’s marginal price with its
fundamental value

⋄ RLP executes her strategy
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Three Stages — Stage I

▷ In this stage, the LP sets the liquidity level by maximising

E
[
L
ν⋆
κ

T + Qν⋆

T S
ν⋆
κ

T −
∫ T

0

(
S
ν⋆
κ

t + η ν⋆
κ,t

)
ν⋆
κ,t dt −

ϕ

2

∫ T

0

(
Q

ν⋆
κ

t + Yt

)2

dt

]
,

over κ ∈ [0, κ]

▷ We prove boundedness and continuity in κ (under mild
conditions) — hence a maximum exists.

▷ For uniswap — constant product market, i.e., f (x , y) = xy
— we have explicit (but not very pretty /) formulae for κ⋆

▷ Key parameters are:

▷ aversion ϕ
▷ volatility σ
▷ CEX trading cost η
▷ profitability γ = λπ (v−π)

2
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Three Stages — Stage I
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Figure: Equilibrium supply of liquidity as a function of model primitives.
Default parameter values are: fee rate π = 0.3%, volatility σ = 0.1,
investment horizon T = 1, private signal A = 0, CEX trading cost
η = 0.01, ratio β = ϕ/η = 10, and profitability γ = 0.2.
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Figure: Sample path of the LP’s reserves Yt held in the DEX and the inventory Qt
held in the CEX (top panels), together with their corresponding values expressed in
units of the reference asset X (bottom panels). The left panels of each figure
correspond to a ratio of risk aversion to trading costs β = 10, while the right panels
correspond to β = 103. Other default parameter values are profitability γ = 0.1,
fundamental volatility σ = 0.2, and investment horizon T = 0.3.
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Figure: Sample path of the LP’s reserves Yt held in the DEX and the inventory Qt
held in the CEX (top panels), together with their corresponding values expressed in
units of the reference asset X (bottom panels). The left panels of each figure
correspond to a ratio of risk aversion to trading costs β = 10, while the right panels
correspond to β = 103. Other default parameter values are profitability γ = 0.1,
fundamental volatility σ = 0.2, and investment horizon T = 0.3.
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Three Stages — Stage I
▷ When the LP executes her optimal CEX strategy, her

change in wealth, measured in units of X , is∫ T

0
Π(Ft , κ

⋆) dt︸ ︷︷ ︸
fee revenue

+ 2κ⋆
(
F
1/2
T − F

1/2
0

)︸ ︷︷ ︸
AMM position value change

−
∫ T

0
Q⋆

t dFt︸ ︷︷ ︸
risk offsetting

−
∫ T

0
η ν⋆ 2t dt︸ ︷︷ ︸

CEX cost

,

▷ When the LP does not offset, her change in wealth is∫ T

0
Π(Ft , κ) dt︸ ︷︷ ︸

fee revenue

+ 2κ
(
F
1/2
T − F

1/2
0

)︸ ︷︷ ︸
AMM position value change

−Q0(FT − F0)︸ ︷︷ ︸
CEX position

,
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Three Stages — Stage I

The expected change in the value of the LP’s DEX liquidity
position is

E
[
2κ⋆ (F

1/2
T − F

1/2
0 )

]
= F

1/2
0

(
e−σ2 T/8 − 1

)
< 0

— viability of DEX liquidity provision depends on whether stage-
three fee revenue, adjusted by replication costs and the proceeds
form risk offsetting, cover these adverse selection costs.
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Three Stages — Stage I

Figure: The distribution is obtained from 2000 market simulations, with
the time interval discretised into 1000 steps. Default parameter values
are σ = 0.1, T = 1, A = 0, η = 0.01, β = 10, and γ = 0.25.
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Thank you....

...Questions & Comments?
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