

From Micro-Foundations to Market Dynamics: A Structural Cointegration Model of Bitcoin Prices

Decentralized Finance & Crypto Workshop

Rosella Castellano, Federico Cini, Annalisa Ferrari

Monday, 26 January 2026

SAPIENZA
UNIVERSITÀ DI ROMA

Table of Contents

1 Motivation and research questions

► Motivation and research questions

► Methodology and data

► Results and discussion

► Conclusions

Motivation

1 Motivation and research questions

- Bitcoin evolved from a digital experiment to a globally traded financial asset, **reaching institutional portfolios** (Corbet et al., 2022; Biais et al., 2023).
- **Controversial price dynamics:**
 - Speculative and sentiment-driven behavior (López-Cabarcos et al., 2021; Lin, 2021).
 - Emerging linkages with macro-financial fundamentals (Conlon and McGee, 2020; Umar et al., 2021).
- Literature focuses on short-run volatility and return predictability (Wang, Shen, and Li, 2022; Demir et al., 2021; Jareño et al., 2021)
 - ➡ **Long-run equilibrium structure largely unexplored.**
- **Key idea: model Bitcoin prices as equilibrium outcomes of investor demand and exogenous supply.**

Gaps in the Literature

1 Motivation and research questions

- **Predominantly reduced-form evidence**
 - Focus on statistical properties, volatility, and return predictability
 - Limited connection to economic primitives (Wang, Shen, and Li, 2022; Peng et al., 2024; Jalal, Alon, and Paltrinieri, 2025)
- **Limited use of structural equilibrium models**
 - Few contributions derive Bitcoin prices from investor behavior and market clearing
 - Notable exceptions do not deliver estimable cointegrating relations (Pagnotta, 2022)
- **Protocol-driven supply largely ignored**
 - Bitcoin supply is deterministic and inelastic
 - Halving events induce discrete structural breaks (Rudd and Porter, 2025; Gezer, 2025)

Research questions

1 Motivation and research questions

RQ1: What long-run equilibrium relationship links Bitcoin's market capitalization to macro financial and energy related fundamentals?

(Wang, Shen, and Li, 2022; Conlon and McGee, 2020; Umar et al., 2021)

RQ2: How do equilibrium elasticities evolve across halving regimes as the market matures?

(Wu, Lee, and Zhao, 2022; Gezer, 2025)

RQ3: How quickly does Bitcoin revert to its structural equilibrium after short run deviations, and does this speed of adjustment evolve over time?

(Biais et al., 2023; Kukacka and Kristoufek, 2023)

Contribution

1 Motivation and research questions

- We propose a **semi-structural valuation framework** that:
 - Links Bitcoin's market capitalization to macro-financial fundamentals
 - Explicitly incorporates protocol-driven supply
- The framework yields:
 - A stable long-run equilibrium relation
 - A disciplined interpretation of short-run deviations
- A key innovation is the **halving-based segmentation**:
 - Each halving defines a distinct economic regime
 - Structural elasticities and adjustment speeds are allowed to evolve over time

Table of Contents

2 Methodology and data

- ▶ Motivation and research questions
- ▶ Methodology and data
- ▶ Results and discussion
- ▶ Conclusions

Theoretical framework

2 Methodology and data

- Investor allocates wealth W_t among Bitcoin (B), equities (S), and gold (G).
- Preferences follow a **Cobb-Douglas** utility:

$$U = q_{B,t}^{\alpha_B} q_{S,t}^{\alpha_S} q_{G,t}^{\alpha_G}.$$

- Budget constraint:

$$p_{B,t}q_{B,t} + p_{S,t}q_{S,t} + p_{G,t}q_{G,t} = W_t.$$

- **Maximization** \implies individual demand:

$$q_{B,t} = \alpha_B \frac{W_t}{p_{B,t}}.$$

- **Bitcoin supply $S_{B,t}$ is fixed by design** (Nakamoto, 2008; Badev and Chen, 2014)

Theoretical framework

2 Methodology and data

- Equilibrium price (market clearing):

$$S_{B,t} = q_{B,t} \implies p_{B,t}^* = \frac{\alpha_B W_t}{S_{B,t}}.$$

- Wealth proxy (macro-financial wealth/liquidity) and Preference weight with observable taste shifters:

$$W_t \propto p_{S,t}^{\beta_S} p_{G,t}^{\beta_G}, \quad \alpha_{B,t} = \bar{\alpha}_B p_{E,t}^{\beta_E} r_t^{\beta_R} T_t^{\beta_T}.$$

$p_{E,t}$ proxies mining/energy conditions; r_t is the opportunity-cost channel; T_t captures adoption/attention.

Theoretical framework

2 Methodology and data

- Collecting terms yields the **constant-elasticity equilibrium price**:

$$p_{B,t}^* = \beta_0 p_{S,t}^{\beta_S} p_{G,t}^{\beta_G} p_{E,t}^{\beta_E} r_t^{\beta_R} T_t^{\beta_T} S_{B,t}^{-1},$$

where $\beta_0 > 0$ absorbs $\bar{\alpha}_B$ and proportionality constants.

$p_{S,t}$ equity market (risk appetite);

$p_{G,t}$ gold price (safe haven);

$p_{E,t}$ energy cost (mining profitability);

r_t risk-free interest rate (opportunity cost);

T_t technology trend.

- Taking logs gives the **estimable long-run relation**:

$$\log p_{B,t}^* = \beta_0 + \beta_S \log p_{S,t} + \beta_G \log p_{G,t} + \beta_E \log p_{E,t} + \beta_R \log r_t + \beta_T T_t - \log S_{B,t} + \varepsilon_t.$$

Theoretical framework

2 Methodology and data

- Considering market capitalization:

$$\log p_{B,t}^* + \log S_{B,t} = \beta_0 + \beta_S \log p_{S,t} + \beta_G \log p_{G,t} + \beta_E \log p_{E,t} + \beta_R \log r_t + \beta_T T_t + \varepsilon_t.$$

β_S, β_G diversification and substitution effects;

β_E energy cost channel;

β_R cost of capital;

β_5 secular trend (adoption);

Empirical design: challenges and solutions

2 Methodology and data

1. Halving regimes (structural breaks)

- Every four years, the **block reward halves**, reducing new BTC issuance.
- Each halving defines a distinct **market regime** with new equilibrium conditions.
- Models are estimated **separately by regime**, treating supply as **exogenous**.

2. Cointegration within each regime

- Price and macro-financial variables are **nonstationary** ($I(1)$).
- However, they may be **cointegrated** \implies long-run equilibrium relation.
- To capture both dynamics:
 - Use **Dynamic OLS (DOLS)** to estimate long-run elasticities.
 - Use **Error-Correction Model (ECM)** to model short-run adjustments.

Goal: Estimate long-run equilibrium and short-run adjustments within each regime.

Empirical design

2 Methodology and data

1. Segmentation by halving period

- The sample is divided into four regimes defined by Bitcoin's halving events.
- Each regime reflects different mining incentives and market equilibria.

2. Stationarity and cointegration tests

- ADF tests on levels and differences to identify $I(1)$ processes.
- Johansen and Engle-Granger tests check for cointegration among variables.

3. Model setup

- Target: **log free-float market capitalization** $y_t = \log(p_{B,t}) + \log(S_{B,t})$.
- Regressors: equity ($p_{S,t}$), gold ($p_{G,t}$), energy ($p_{E,t}$), interest rate (r_t), and trend (T_t).

Empirical design

2 Methodology and data

4. Long-run equilibrium (DOLS)

- Estimate:

$$y_t = \beta_0 + \beta' X_t + \sum_{k=-K}^K \Gamma'_k \Delta X_{t-k} + u_t.$$

- Leads and lags of ΔX_t correct for endogeneity and serial correlation.
- Long-run coefficients β are interpretable as **structural elasticities**.
- HAC covariance (5 lags) ensures robust inference.

Empirical design

2 Methodology and data

5. Short-run adjustment (ECM)

- Use the residuals \hat{u}_{t-1} from DOLS as the equilibrium correction term:

$$\Delta y_t = \alpha \hat{u}_{t-1} + \sum_{j=0}^P \phi'_j \Delta X_{t-j} + \varepsilon_t, \quad \hat{u}_{t-1} = y_{t-1} - (\hat{\beta}_0 + \hat{\beta}' X_{t-1}).$$

- α measures the **speed of adjustment** toward equilibrium.
- A **negative and significant** α implies mean reversion toward the structural equilibrium.

Data

2 Methodology and data

- **Dataset:** Daily observations from **2012–2024**.
- **Segmentation:** The sample is divided into **four halving periods** reflecting Bitcoin's protocol-driven block reward schedule.
- **Variables and Sources:**

Symbol	Description	Source / Proxy
$p_{B,t}$	Bitcoin price (USD, log)	CoinMetrics
$S_{B,t}$	Circulating supply (BTC, log)	CoinMetrics
$p_{S,t}$	Equity market price	S&P 500 index — Yahoo Finance
$p_{G,t}$	Gold price	London Bullion Market (LBMA) — Yahoo Finance
$p_{E,t}$	Energy cost proxy	Henry Hub natural gas futures — U.S. EIA
r_t	Opportunity cost of capital	U.S. Treasury yield (10Y) — Yahoo Finance
T_t	Investor attention	Google Trends (topic: "Bitcoin")

Table of Contents

3 Results and discussion

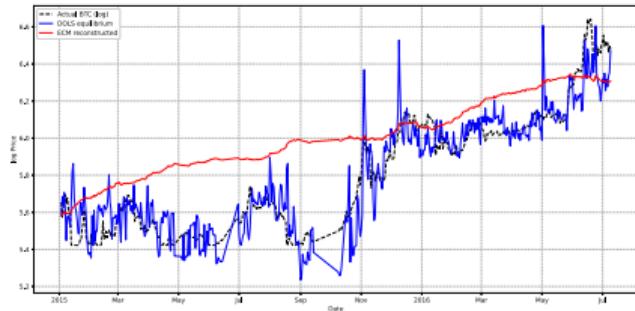
- ▶ Motivation and research questions
- ▶ Methodology and data
- ▶ Results and discussion
- ▶ Conclusions

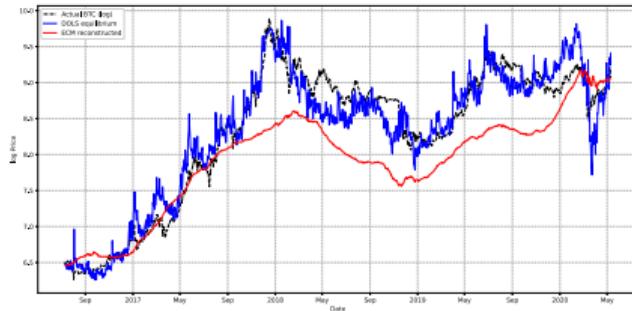
Results: Stationarity and cointegration tests

3 Results and discussion

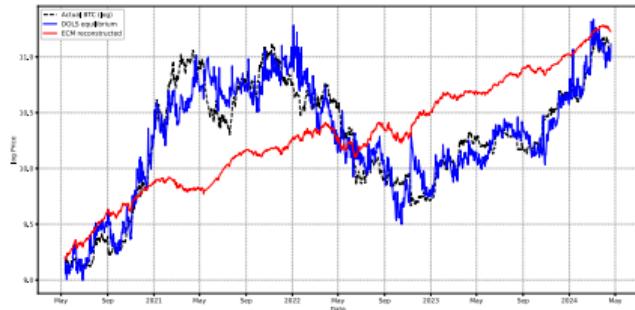
- All variables are **integrated of order one (I(1))**: levels nonstationary, differences stationary.
- **Johansen trace test**: confirms at least one long-run equilibrium per halving period.
- **Pairwise BTC-X tests**: mostly insignificant \implies cointegration is **joint**, not pairwise.

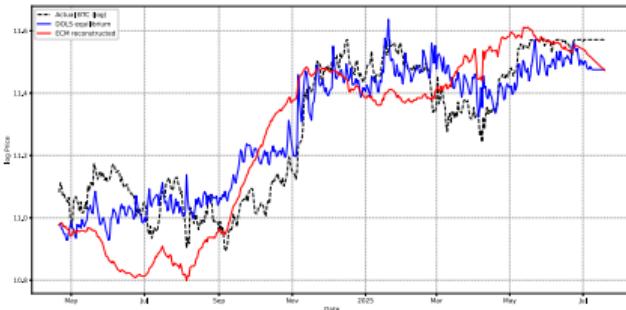
Halving	1	2	3	4
Johansen rank	2	2	1	1
ADF (I(1) confirmed)	Yes	Yes	Yes	Yes
Cointegrated jointly?	Yes	Yes	Yes	Yes
Pairwise BTC-X p-value < 0.05	Few	Few	1 (trend)	None


Interpretation: Bitcoin's equilibrium is defined by a common stochastic trend involving multiple macro-financial variables.


Reconstructed Equilibrium Prices across Halving Regimes

3 Results and discussion


Halving 1 (2012-2016)


Halving 2 (2016-2020)

Halving 3 (2020-2024)

Halving 4 (2024-)

Results: Long-run equilibrium (DOLS)

3 Results and discussion

- Bitcoin's equilibrium price responds to **equity markets, interest rates, and long-run adoption**.
- The estimated long-run elasticities evolve across halvings, revealing **structural transitions**.

Halving	S&P 500	UST (rates)	Gold	Energy	Trend
H1 (2012-16)	1.62***	0.21***	0.38**	-0.01	0.54***
H2 (2016-20)	4.44***	0.08 [†]	0.40	-0.23 [†]	0.69***
H3 (2020-24)	3.48***	-0.05***	-0.50 [†]	-0.06 [†]	0.40***
H4 (2024-)	0.90***	-0.74***	0.57**	0.10**	0.15***

Results: Long-run equilibrium (DOLS)

3 Results and discussion

- Early halvings (H1-H2) – speculative, liquidity-based asset
 - Equilibrium dominated by **equity market conditions**.
 - Very large S&P elasticities ($\beta_S > 1$, up to 4.4).
 - Strong trend elasticity \implies **adoption and attention drive valuation**.
 - Interest rates and energy largely irrelevant.
- Later halvings (H3-H4) – macro-financially integrated instrument
 - Interest-rate elasticity turns **negative and significant**.
 - Gold switches to stable positive co-movement.
 - Energy becomes a positive long-run anchor.
 - Trend elasticity declines monotonically.

Interpretation: equilibrium valuation shifts from speculative attention to macro-financial fundamentals.

Results: Short-run dynamics (ECM)

3 Results and discussion

- The error-correction term (α) measures how fast deviations from equilibrium are closed.
- BTC returns mainly react to equity returns in the short run.
- **Speed of adjustment** rises over time \implies markets close gaps faster.
- **Short-run co-movement** with equities strengthens post-2020.

Halving	α	Half-life (days)	R^2	$\Delta S\&P$ Coeff.
H1	-0.0169	41	0.02	0.04
H2	-0.0180***	38	0.05	0.74***
H3	-0.0101**	68	0.12	1.19***
H4	-0.0453***	15	0.17	0.97***

Results: Short-run dynamics (ECM)

3 Results and discussion

- **Early phase (H1-H2):** BTC behaves as a **high-beta asset**, tracking global liquidity and speculative wealth effects.
- **Transition (H3):** Start of macro anchoring—interest rates gain explanatory power, trend importance fades.
- **Mature phase (H4):** BTC integrates into the global financial cycle:
 - Negative rate elasticity (discount rate effect);
 - Positive gold and energy link (inflation and production cost channels);
 - Strongest error correction (market efficiency).

Interpretation: Bitcoin's equilibrium has evolved from adoption-driven to macro-financialy grounded.

Warning: markets become more efficient, but not less risky.

Table of Contents

4 Conclusions

- ▶ Motivation and research questions
- ▶ Methodology and data
- ▶ Results and discussion
- ▶ Conclusions

Conclusions and future work

4 Conclusions

- Bitcoin's price follows a **demand-driven equilibrium**, with supply exogenous and fixed in the short run by protocol design.
- DOLS results show a shift from **liquidity-driven** to **macro-financial anchoring**:
 - Early halvings: equity and trend dominate (speculative phase);
 - Later halvings: interest rates and energy costs gain relevance.
- ECM confirms a **faster correction** toward equilibrium, consistent with a maturing market.
- **Future work:** extend the framework to include
 - **short-term supply flexibility** driven by mining activity,
 - **volatility and regime-switching** effects,
 - and **energy–hash rate feedback loops**.

Financial implications

4 Conclusions

- **Diversification**
 - Early Bitcoin: idiosyncratic but unstable diversifier.
 - Mature Bitcoin: less orthogonal to macro risk factors.
- **Hedging properties**
 - Safe-haven role becomes **state-dependent**.
 - Performance tied to monetary and inflation regimes.
- **Interpretability**
 - Structural elasticities provide economic meaning to valuation.
 - Error-correction captures mispricing and market discipline.

References

5 Conclusions

- Badev, Anton and Matthew Chen (2014). "Bitcoin: Technical Background and Data Analysis". In: *Finance and Economics Discussion Series 2014-104*, Board of Governors of the Federal Reserve System (U.S.) DOI: 10.17016/FEDS.2014.104.
- Biais, Bruno et al. (2023). "Equilibrium bitcoin pricing". In: *The Journal of Finance* 78.2, pp. 967-1014.
- Conlon, Thomas and Richard McGee (2020). "Safe haven or risky hazard? Bitcoin during the COVID-19 bear market". In: *Finance Research Letters* 35, p. 101607.
- Corbet, Shaen et al. (2022). "Cryptocurrency liquidity and volatility interrelationships during the COVID-19 pandemic". In: *Finance Research Letters* 45, p. 102137.
- Demir, Ender et al. (2021). "The asymmetric effect of bitcoin on altcoins: evidence from the nonlinear autoregressive distributed lag (NARDL) model". In: *Finance Research Letters* 40, p. 101754.
- Gezer, Ali (2025). "Chaos in bitcoin cryptocurrency metrics: Analysis and forecasts". In: *Arabian Journal for Science and Engineering* 50.8, pp. 5869-5884.

References

5 Conclusions

- Jalal, Raja Nabeel-Ud-Din, Ilan Alon, and Andrea Paltrinieri (2025). "A bibliometric review of cryptocurrencies as a financial asset". In: *Technology Analysis & Strategic Management* 37.4, pp. 432-447.
- Jareño, Francisco et al. (2021). "Cryptocurrencies and oil price shocks: A NARDL analysis in the COVID-19 pandemic". In: *Resources Policy* 74, p. 102281.
- Kukacka, Jiri and Ladislav Kristoufek (2023). "Fundamental and speculative components of the cryptocurrency pricing dynamics". In: *Financial Innovation* 9.1, p. 61.
- Lin, Zih-Ying (2021). "Investor attention and cryptocurrency performance". In: *Finance Research Letters* 40, p. 101702.
- López-Cabarcos, M Ángeles et al. (2021). "Bitcoin volatility, stock market and investor sentiment. Are they connected?" In: *Finance Research Letters* 38, p. 101399.
- Nakamoto, Satoshi (2008). "Bitcoin: A peer-to-peer electronic cash system". In: *Decentralized business review*, p. 21260.

References

5 Conclusions

- Pagnotta, Emiliano S (2022). "Decentralizing money: Bitcoin prices and blockchain security". In: *The Review of Financial Studies* 35.2, pp. 866–907.
- Peng, Sanshao et al. (2024). "A systematic literature review on the determinants of cryptocurrency pricing". In: *China Accounting and Finance Review* 26.1, pp. 1–30.
- Rudd, Murray A and Dennis Porter (2025). "A Supply and Demand Framework for Bitcoin Price Forecasting". In: *Journal of Risk and Financial Management* 18.2, p. 66.
- Umar, Muhammad et al. (2021). "Bitcoin: A safe haven asset and a winner amid political and economic uncertainties in the US?" In: *Technological Forecasting and Social Change* 167, p. 120680.
- Wang, Chen, Dehua Shen, and Youwei Li (2022). "Aggregate investor attention and Bitcoin return: The long short-term memory networks perspective". In: *Finance Research Letters* 49, p. 103143.
- Wu, Jing, Cheng-Few Lee, and Zhiwei Zhao (2022). "Bitcoin halving and price dynamics: New evidence from high-frequency data". In: *Finance Research Letters* 45, p. 102167.

*Thank you for listening!
Any questions?*