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Decentralised Exchanges (DEXs)

▶ Whereas Centralized Exchanges (CEXs) rely on Limit Order
Books (LOBs) to match buyers and sellers, DEXs execute
transactions using liquidity pools

▶ Liquidity Providers (LPs) deposit digital assets into liquidity
pools in exchange for a share of the transaction fees

▶ Liquidity Takers (LTs) trade against these pools according to
algorithmic pricing rules: Automated Market Makers (AMMs)
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Market

▶ The Total Value Locked
(TVL) across all DEXs is
$15b, with a daily trading
volume of $10b

▶ Uniswap accounts for almost
25% of both total TVL and
daily trading volume
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Figure 1. Volume distribution across

protocols (in %), source: DeFiLlama
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Uniswap v2

▶ We consider a liquidity pool governed by a Constant Product
AMM (CPAMM). The pool consists of ETH and USD, with
reserves qETH and qUSD such that:

qETHqUSD = L2

where L is the liquidity of the pool

▶ The spot price of ETH in USD is:

p =
qUSD

qETH

▶ Liquidity takers execute trades against the pool in such a way
that the product of the reserves remains constant
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Uniswap v2
▶ Suppose a trader wants to sell δ. In return, the AMM

determines the amount δUSD to be received by solving:

(qETH + δ)(qUSD − δUSD) = L2

▶ The amount δUSD received by the trader is:

δUSD =
δp

1 +
δ
√
p

L

≈ δp
(
1−

δ
√
p

L

)
▶ The post-swap spot price is given by:

p+ =
p(

1 +
δ
√
p

L

)2 ≈ p
(
1−

2δ
√
p

L

)
where the approximations correspond to first-order Taylor

expansions in
δ
√
p

L = δ
qETH
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The scheduling problem on Uniswap v2

▶ We consider the problem of a trader executing a large sell
order of size ξ > 0 of ETH over a fixed time horizon T . The
time interval [0, T ] is divided into a regular partition:
0 = t0 < t1 < · · · < tN = T , with ∆ = T

N

▶ At each time tm, the trader sells an amount δm of ETH,
subject to the volume constraint:

N∑
m=0

δm = ξ
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Schematic spot price dynamics

f0

↓ Sell δ0 at t0

f0
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1− 2δ0

√
f0

L
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↓ resilience and external factors

from t0 to t1

f1

(
1− e−ρ∆ 2δ0

√
f0

L

)
↓ Sell δ1 at t1

f1

(
1− e−ρ∆ 2δ0

√
f0

L
− 2δ1

√
f1

L

)
↓
. . .
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Spot price

▶ We model the spot price as the combination of three
components:

• fundamental price process (fm)Nm=0
• cumulative price impact induced by previous trades
• resilience of the liquidity pool

▶ We write the spot price at time tm as:

pm = fm

(
1−

m−1∑
n=0

J∑
j=0

ωje
−ρj(m−n)∆ 2δn

√
fn

L

)
where (ρj)

J
j=0 are resilience parameters and (ωj)

J
j=0 the

associated weights
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The scheduling problem on Uniswap v2

▶ The execution problem of the trader is:

δ∗ = argmax
δ

E
[ N∑
m=0

Cm
]

s.t.

N∑
m=0

δm = ξ

▶ The cash-flow at time tm is:

Cm = δmfm

(
1−

m−1∑
n=0

J∑
j=0

ωje
−ρj(m−n)∆ 2δn

√
fn

L
− δm

√
fm

L

)
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The scheduling problem on Uniswap v2

General solution
The optimal execution schedule is:

δ∗ =
(
ξ − L

2
1
⊤A−1B

) A−1
1

1⊤A−11
+
(L
2
1
⊤A−1B

) A−1B

1⊤A−1B

where 1 =
(
1, . . . , 1

)⊤
, Bm = E[fm] and:

Amn =

{ ∑J
j=0 ωje

−ρj(m−n)∆E[fm
√
fn] if n ≤ m∑J

j=0 ωje
−ρj(n−m)∆E[fn

√
fm] if n > m
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The scheduling problem on Uniswap v2

Martingale case

If the fundamental price process is a martingale, the optimal
solution reduces to:

δ∗ = ξ
A−1

1

1⊤A−11

▶ the solution is independent of the liquidity level L
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Geometric Brownian motion case

▶ We assume the fundamental price to follow a geometric
Brownian motion:

fm = f0e
(µ−σ2

2
)m∆+σWm

where:
• f0 is the initial fundamental price
• µ the drift
• σ the volatility
• Wm denotes the Brownian motion at time tm

▶ The optimal strategy δ∗ is unique under the condition:

µ <
3σ2

4
+ 4min

j
ρj
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The scheduling problem on Uniswap v2
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Figure 2. Optimal execution schedule (relative to the initial trade for the sake

of comparison) under three scenarios
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The scheduling problem on Uniswap v2
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Figure 3. Optimal execution schedule (relative to the initial trade for the sake

of comparison) under three stressed scenarios

15 / 26



Introduction Optimal execution on Uniswap v2 From Uniswap v2 to v3 Empirical study Conclusion

Dynamic programming framework

▶ We reformulate the execution problem within a dynamic
programming framework

▶ The state variables are given by the triplet (xn, (I
j
n)Jj=0, fn),

where xn is the remaining inventory, Ijn the cumulative price
impacts induced by the j-th resilience factor and fn the
fundamental price (geometric Brownian motion):

{
x0 = ξ
xn+1 = xn − δn

{
Ij0 = 0

Ijn+1 = e−ρj∆
(
Ijn + 2δn

√
fn

L

)
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Dynamic programming framework

▶ Let vn(xn, (I
j
n)Jj=0, fn) denote the value function, the

associated Bellman equation reads:

vn(xn, (I
j
n)

J
j=0, fn) = sup

δn

δnfn
(
1−

J∑
j=0

ωjI
j
n − δn

√
fn

L

)
+ E

[
vn+1(xn+1, (I

j
n+1)

J
j=0, fn+1)|fn

]
▶ The terminal condition enforces complete liquidation:

vN (xN , (IjN )Jj=0, fN ) = xNfN

(
1−

J∑
j=0

ωjI
j
N − xN

√
fN

L

)
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Dynamic programming framework

Dynamic programming solution

The value function reads:

vn(xn, (I
j
n)

J
j=0, fn) = xnfn

(
An +

J∑
j=0

Bj
nI

j
n + Cnxn

√
fn

)

+
√
fn

(
Dn +

J∑
j=0

Ej
nI

j
n +

J∑
j1=0

J∑
j2=0

F j1,j2
n Ij1n Ij2n

)
and the optimal control:

δ∗n(xn, (I
j
n)

J
j=0, fn) =

1

2ϕn+1
√
fn

[
θ1n+1+

J∑
j=0

Ijnθ
2,j
n+1+xn

√
fnθ

3
n+1

]
The coefficients are determined recursively
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Dynamic programming framework
▶ The coefficients ϕn+1, θ

1
n+1,

(
θ2,j1n+1

)J
j1=0

and θ3n+1 read:

ϕn+1 =
1

L
+

2

L

J∑
j=0

Bj
n+1e

(µ−ρj)∆−Cn+1e
( 3µ

2
+ 3σ2

8
)∆−

4

L2

J∑
j1=0

J∑
j2=0

F j1,j2
n+1 e(

µ
2
−ρj1−ρj2−σ2

8
)∆

θ1n+1 = 1−An+1e
µ∆ +

2

L

J∑
j=0

Ej
n+1e

(µ
2
−ρj−σ2

8
)∆

θ2,j1n+1 = −ωj1 −Bj1
n+1e

(µ−ρj1 )∆

+
4

L

J∑
j2=0

F j1,j2
n+1 e(

µ
2
−ρj1−ρj2−σ2

8
)∆

θ3n+1 =
2

L

J∑
j=0

Bj
n+1e

(µ−ρj)∆

− 2Cn+1e
( 3µ

2
+ 3σ2

8
)∆



An = An+1eµ∆ + 1
2ϕn+1

θ1n+1θ
3
n+1

Bj
n = Bj

n+1e
(µ−ρj)∆ + 1

2ϕn+1
θ2,jn+1θ

3
n+1

Cn = Cn+1e
( 3µ

2
+ 3σ2

8
)∆ + 1

4ϕn+1
(θ3n+1)

2

Dn = Dn+1e
(µ
2
−σ2

8
)∆ + 1

4ϕn+1
(θ1n+1)

2

Ej
n = Ej

n+1e
(µ
2
−ρj−σ2

8
)∆ + 1

2ϕn+1
θ1n+1θ

2,j
n+1

F j1,j2
n = F j1,j2

n+1 e(
µ
2
−ρj1−ρj2−σ2

8
)∆ + 1

4ϕn+1
θ2,j1n+1θ

2,j2
n+1

with AN = 1, Bj
N = −ωj , CN = − 1

L , DN = Ej
N = F j1,j2

N = 0
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Two-layer liquidity framework

▶ We consider a Uniswap v3 pool with two layers of liquidity:
• L0 if the spot price is above the threshold p
• L1 < L0 if the spot price is below p
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Figure 4. Two-layer liquidity profile
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Two-layer liquidity framework
▶ Dynamics of the cumulative price impacts

Ijn+1 =


e−ρj∆

(
Ijn + 2δn

√
fn

L1

)
if pn ≤ p

e−ρj∆
(
Ijn + 2δn

√
fn

L0
+

2(δn−δn)
√

p
L1

)
if pn > p and δn > δn

e−ρj∆
(
Ijn + 2δn

√
fn

L0

)
if pn > p and δn ≤ δn

▶ Bellman equation

vn(xn, (I
j
n)

J
j=0, fn) = sup

δn

Cn + E
[
vn+1(xn+1, (I

j
n+1)

J
j=0, fn+1)|fn

]
where:

Cn =



δnfn
(
1−

∑J
j=0 ωjI

j
n − δn

√
fn

L1

)
if pn ≤ p

δnfn
(
1−

∑J
j=0 ωjI

j
n − δn

√
fn

L0

)
+ (δn − δn)p

(
1−

∑J
j=0 ωjI

j
n − (δn−δn)

√
p

L1

) if pn > p and δn > δn

δnfn
(
1−

∑J
j=0 ωjI

j
n − δn

√
fn

L0

)
if pn > p and δn ≤ δn
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Two-layer liquidity framework

▶ We define the spread s by:

p = f0 + s
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Figure 5. Optimal execution schedule with respect to s
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ETH/USDT liquidity pools
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Figure 6. Evolution of ETH/USDT spot prices
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ETH/USDT liquidity pools
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Figure 7. Estimated propagator functions
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Conclusion

▶ We derive closed-form optimal solutions of the scheduling
problem on Uniswap v2

▶ We rely on numerical schemes to estimate the optimal
strategy on Uniswap v3

▶ Model calibration is still ongoing
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Questions

Thanks for your attention !
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Two-layer liquidity framework
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Two-layer liquidity framework
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Transient Impact Model (TIM1)
▶ From Taranto et al., Linear models for the impact of order

flow on prices I. Propagators: Transient vs. History
Dependent Impact, Quant. Finance 18 (2018), 903–915, the
mid-price is given by:

mt =
∑
t′<t

[
G(t− t′)εt′ + ηt′

]
+m−∞

where:
• εt′ is the sign of trade at time t′

• ηt′ is a noise term at time t′

▶ The function G is called the propagator and describes the
decay of price impact with time

▶ The response function is defined by:

R(ℓ) = E
[
(mt+ℓ −mt)εt

]
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MSFT and AAPL

Figure 10. Estimated propagator functions from Taranto et al., Linear models

for the impact of order flow on prices I. Propagators: Transient vs. History

Dependent Impact, Quant. Finance 18 (2018), 903–915
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ETH/USDT liquidity pools
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Figure 11. Estimated propagator functions
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MSFT and AAPL

Figure 12. Response functions from Taranto et al., Linear models for the

impact of order flow on prices I. Propagators: Transient vs. History Dependent

Impact, Quant. Finance 18 (2018), 903–915
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ETH/USDT liquidity pools
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Figure 13. Response functions
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ETH/USDT liquidity pools
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