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Decentralised Exchanges (DEXs)

Whereas Centralized Exchanges (CEXs) rely on Limit Order
Books (LOBs) to match buyers and sellers, DEXs execute
transactions using liquidity pools

Liquidity Providers (LPs) deposit digital assets into liquidity
pools in exchange for a share of the transaction fees

Liquidity Takers (LTs) trade against these pools according to
algorithmic pricing rules: Automated Market Makers (AMMs)
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Market

» The Total Value Locked
(TVL) across all DEXs is

$15b, with a daily trading —
¥

volume of $10b

Uniswap

Pancakeswap

» Uniswap accounts for almost
25% of both total TVL and woon -y umar
daily trading volume

Figure 1. Volume distribution across

protocols (in %), source: DeFilLlama

4/26



Introduction Optimal execution on Uniswap v2 From Uniswap v2 to v3 Empirical study Conclusion
oo [Te) fole)

Q0Q000 [e]

Q00

0000

» We consider a liquidity pool governed by a Constant Product
AMM (CPAMM). The pool consists of ETH and USD, with
reserves ¢ETH and ¢VP such that:

gETHUSD _ 12

where L is the liquidity of the pool

» The spot price of ETH in USD is:

USD
q

P="ErH
gETH

P Liquidity takers execute trades against the pool in such a way
that the product of the reserves remains constant
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Uniswap v2

» Suppose a trader wants to sell 4. In return, the AMM
determines the amount 6YP to be received by solving:

(qETH +5)(qUSD _ 5USD) — L2

» The amount §Y5P received by the trader is:

op 0/
USD __ ~ _ V&

P> The post-swap spot price is given by:
— M)
(1+2)° L

where the approximations correspond to first-order Taylor
0/P 5

expansions in == = gy
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The scheduling problem on Uniswap v2

> We consider the problem of a trader executing a large sell
order of size £ > 0 of ETH over a fixed time horizon T'. The
time interval [0, 7] is divided into a regular partition:
O=to<ti < ---<ty=T, WithA:%

» At each time ¢,,, the trader sells an amount §,,, of ETH,
subject to the volume constraint:

N
S -
m=0
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Schematic spot price dynamics
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Spot price

> We model the spot price as the combination of three
components:

® fundamental price process (fn)N_,

® cumulative price impact induced by previous trades

® resilience of the liquidity pool

> We write the spot price at time t,,, as:
m—1 J
26p/
pm—fm(l—zzw —pj(m=n)A fn)
n=0 57=0
where (Pj)}lzo are resilience parameters and (wj)jzo the

associated weights
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The scheduling problem on Uniswap v2

> The execution problem of the trader is:

o* —argmax E[ZC }

m=0
N
st Y m=¢
m=0
» The cash-flow at time ¢,, is:
1 J T Vo
=0 f (1—m we_pjm "Z)A26 fn 6m fm)
m mJm J L
n=0 7=0
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The scheduling problem on Uniswap v2

General solution
The optimal execution schedule is:

where 1 = (1,...,1)T, By, = E[f,] and:

A = Z&']:owa‘e"’j(m‘")AE[fm\/ﬁ] if n<m
™7 S pwie AR f/F] ifn > m
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The scheduling problem on Uniswap v2

Martingale case

If the fundamental price process is a martingale, the optimal
solution reduces to:

A1

"=t

> the solution is independent of the liquidity level L
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Geometric Brownian motion case

> We assume the fundamental price to follow a geometric
Brownian motion:

2
fm = foel#=F)mA+oWn

where:
® fy is the initial fundamental price
® 4 the drift
® o the volatility
® JV,, denotes the Brownian motion at time ¢,,

» The optimal strategy 0* is unique under the condition:

2

+ 4 min p;
J
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The scheduling problem on Uniswap v2

1.0
—— scenario 1 (exponential resilience)
. 0.9 ~—=— scenario 2 (power-law resilience)
Sos —e— scenario 3 (predominant permanent impact)
@
5 0.7
E 06
2
o 05
2
£ 04
®
=03
(]
Bo3
02 ‘\\/
0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time

Figure 2. Optimal execution schedule (relative to the initial trade for the sake

of comparison) under three scenarios
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The scheduling problem on Uniswap v2

1.0
—— scenario 1 (exponential resilience)

0.9 ~—=— scenario 2 (power-law resilience)
0.8 —e— scenario 3 (predominant permanent impact)

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

(relative to initial trade)

trade

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
time

Figure 3. Optimal execution schedule (relative to the initial trade for the sake

of comparison) under three stressed scenarios
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Dynamic programming framework

> We reformulate the execution problem within a dynamic
programming framework

» The state variables are given by the triplet (z,, (I%)}-]:(), fn),

where x,, is the remaining inventory, IJ the cumulative price
impacts induced by the j-th resilience factor and f, the
fundamental price (geometric Brownian motion):

{96025 Iy =0

Tntl = Ty — 571 IgL+1 = e_ij <I‘77L + 72671[\//](7)
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Dynamic programming framework

> Let v, (xy, (I%)jzo, fn) denote the value function, the
associated Bellman equation reads:

J

(. (1)1 o,fn)—sup Onfn (1 Z I, - fn)

[Un+1(xn+1a( n—‘,—l)j 07fn+1)|fn]
» The terminal condition enforces complete liquidation:

un (TN, (I]jv)}']=0>fN) = foN( Z - xNF)
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Dynamic programming framework

Dynamic programming solution
The value function reads:

J
'Un(xnv (1}7;)3‘]:07 fn) = :ann (An + Z B%I% + Chan fn)

j:O
+VFa(Da+ ZE;LI,g + Z Z e
J1=072=0

and the optimal control:

1

0 (s (1) =0, fn) = 20011V Tn

[e;“@mnﬂﬂnmezﬂ}
7=0

The coefficients are determined recursively
18/26
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Dynamic programming framework
> The coefficients ¢p41, 0,1, (Qiill)jl:o and 63, read:
1 2K S 302 &
Pni1 = Z+EZB;He(“—PJ‘)A—CnHe(T*T) Z Fi2els =P ~p = %A

J1—0J2 0

9711+1 =1-Appre® 4+ = ZEn+1e R Fa

An = Apy1et® + 5 — 9n+10n+1

9721111 = Wi BZ;14r1e(#_pj1)A B = BJ el pJ)A 1 g2J g3
R o e n+ o ,, A2¢ n4l "+1 n+1
+ T Z Fii{26(77p117p327?)A Cp = Cn+1e( A 4 4¢n+1( n+1)
7270 D= Dy e85 ¢ e (9;+1)2
i1 = ZBJ elupa B} = EZLH@(%—M—%)A + 2¢ ntl ‘9711+19ni1
_ 2Cn+1e<7“+%m Foe = Flpfrel8mrnmrin =508 4 Gl onon s

with Ay =1, By = —w;, Cy = =1, Dy = B}, = F{}* =0
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> We consider a Uniswap v3 pool with two layers of liquidity:
® [ if the spot price is above the threshold p

liquidity
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ptimal execution on Uniswap v2

Q000

From Uniswap v2 to v3
0

Empirical study

Two-layer liquidity framework

® [ < Ly if the spot price is below p

0.80 0.85 0.90 0.95 1.00 1.05
price

Figure 4. Two-layer liquidity profile

Conclusion
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Two-layer liquidity framework

» Dynamics of the cumulative price impacts

emPiA (I}, + 2n/In) if pn <P
Igd = e~ PiA IJ 20, ‘/fT + 2(5n_6 )vB if pr >p and d, > gn
n+1

efij([,J1 + 25nm) if pp, > P and 6, < 6,

» Bellman equation

Vn(Tn, (IZL)}]:O7 fn) = S(;lp Cn + ]E[’Un-!—l(xn-klv (I£+1)3‘]:07 fn+1)|fn]

n

where:
Snfn(l— '—OWJIJ - ini/lfin) if pn <P
Snfn(l— I — dn¥in -
C = S fn( j=0ws Lo )J (6-Furvs  (Pn>Pand 8, >5n
+ (6n — 0n)P(1 — ,0 wjIf — Fnpnivl)

Snfn(1 =] gw;Ih — 2 g{)fT) if pn > P and 6p < 3n
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> We define the spread s by:

trade
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uniswap v2
S= —5000bps
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5= —250bps
5= —100bps

0.0 0.1

Figure 5.
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time

Optimal execution schedule with respect to 5

Conclusion
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Figure 6. Evolution of ETH/USDT spot prices
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Figure 7. Estimated propagator functions
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Conclusion

» We derive closed-form optimal solutions of the scheduling
problem on Uniswap v2

» We rely on numerical schemes to estimate the optimal
strategy on Uniswap v3

» Model calibration is still ongoing
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Thanks for your attention !
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Transient Impact Model (TIM1)

» From Taranto et al., Linear models for the impact of order
flow on prices |. Propagators: Transient vs. History
Dependent Impact, Quant. Finance 18 (2018), 903-915, the
mid-price is given by:

my =Y [G(t—tey +mw] + Mo
<t
where:

® <, is the sign of trade at time ¢t/
® 7 is a noise term at time ¢

» The function G is called the propagator and describes the
decay of price impact with time

» The response function is defined by:
R(ﬁ) = E[(mHe - mt)at]
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Figure 10. Estimated propagator functions from Taranto et al., Linear models

for the impact of order flow on prices I. Propagators: Transient vs. History

Dependent Impact, Quant. Finance 18 (2018), 903-915
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Figure 12. Response functions from Taranto et al., Linear models for the
impact of order flow on prices |. Propagators: Transient vs. History Dependent
Impact, Quant. Finance 18 (2018), 903-915
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