
Ultra-High Frequency Verifiable Public
Randomness from Tick-by-Tick Data

Silvia Onofri1 Andrey Shternshis2 Stefano Marmi1

1 Scuola Normale Superiore, Pisa (Italy)
2 Uppsala University, Uppsala (Sweden)

DeFi&Crypto Workshop - 27/01/2026

1 Random Beacons

2 Tick data and methodology
RNG test batteries
Randomness tests results

3 Randomizing cryptocurrency data

4 Conclusions and bibliography

Random Beacons

What is a Random Beacon?

A Random Beacon is a protocol or service that regularly publishes
random values (seeds) that are unpredictable before publication
and publicly verifiable afterwards.
A secure beacon must satisfy three core properties:

1 Unpredictability: No party (including the beacon provider) can
predict the value of a future beacon output.

2 Verifiability: Anyone can verify that the beacon output was
generated correctly according to the public protocol.

3 Availability: The beacon produces new values at guaranteed,
regular intervals.

Random beacons are useful in scenarios such as lotteries, public
elections, audit challenges, cryptographic protocols, etc.

Sources of entropy to build random beacons

Physical methods: dice, coin flips, lottery ball machines (easy
to understand, hard to scale remotely)

Pre-published randomness: random tables, printed books of
values (verifiable but limited entropy and risk of re-use)

Network / harvested data: news headlines, weather reports,
blockchains

Financial/market data

Efficient markets and random number generators

Modern portfolio theory (Markowitz, Sharpe) and the statistical evidence
that stock prices follow random walks (Mandelbrot, Fama), has led to the
Efficient Market Hypothesis, see Samuelson (1965), Fama (1970).

Efficient Market Hypothesis

Asset prices fully and fairly reflect all available information.

Weak EMH

The price of a financial asset in an efficient market is a martingale, it behaves
like a random walk.

Therefore, an efficient market (EM) is a candidate for being a random
number generator (RNG): If we code only the direction of market returns,
then an efficient market should generate a random stream of 0s and 1s
representing negative and positive returns, respectively.

Whether a market is efficient can then be tested in much the same way
that a hardware RNG might be tested.

Clark’s proposal

In [Clark and Hengartner, 2010], Clark and Hengartner propose a
model of random beacon that uses a stock market closing prices to
build a random beacon.

Fit a geometric Brownian motion (the Black–Scholes
stochastic model) to historical closing prices;

Use a Monte Carlo simulation to predict many next-day
outcomes to bound conservative min-entropy (6− 9 bits of
entropy per day);

Use a portfolio of stocks to obtain more entropy (accounting
for correlations);

Use a randomness extractor to produce the beacon output.

Tick data and methodology

Random beacon based on tick data

Our idea is to build a random beacon based on ultra-high
frequency tick data:

Longer strings ⇒ more entropy

Model-free: no need of any model and does not require to run
any simulation.

Online approach: one can compute the strings while data
becomes available.

In [Onofri et al., 2025], we develop a methodology to extract
random strings from tick data.

The journey from ticks to randomness

What is Tick Data? Every single trade event for a stock, e.g. Apple
(AAPL).

Every time shares are bought or sold a tick is created, recording at what
price, and how many stocks were traded.

The time frequency of this data varies a lot: You might get 50 events in
one millisecond during a market open and then no events for two full
seconds in the middle of the day.

At this tick-by-tick level, the price series is not random at all. It has
several predictable, short-term patterns (the so-called microstructure
noise)

For example, a large order being filled can create a temporary, predictable
price impact as it “eats through” the available liquidity.

Algorithmic Footprints: High-frequency trading algorithms might have
their own patterns (e.g., market-making strategies). Around two-thirds of
all the volume traded on stockmarkets is generated by algorithms.

Why do we need aggregation?

We aggregate trades {st} by looking at (sub)sequences
{sj+iℓ} of ticks of step ℓ ≥ 1.

We are essentially sampling the tick data at regular intervals
in “trade time”.

Why Does Aggregation Increase Randomness? This is the
key. As you aggregate over longer and longer periods, the
(non-random) microstructure noise is “averaged out”.

Why do we need aggregation?

Figure 1: From Nanex “Flash Crash Analysis” study

Methodology: from prices to binary strings

We consider only executed orders prices {s1, s2, . . . , sN} and compare
adjacent times to obtain binary strings b ∈ {0, 1}∗.

r =
si
si−1


< 1 then b → b0

= 1 then b → b

> 1 then b → b1

Then we construct other sequences by aggregating data by an
aggregation level ℓ = 1, . . . , 100. We consider ℓ samplings to build binary
strings bj , j = 1, . . . , ℓ.

r =
sj+iℓ

sj+(i−1)ℓ


< 1 then bj → bj0

= 1 then bj → bj

> 1 then bj → bj1

From each initial sequence {st} we get
∑100

k=1 k = 5050 different binary
sequences. We test all these sequences with standard batteries of
randomness tests.

Dataset

Asset Ticker Mean
price

Standard
deviation
of price

Daily trad-
ing volume

Daily num-
ber of
transac-
tions

Average time
between
transactions

Apple Inc. AAPL 153.47 0.93 12,184,032 136,136 0.165
Microsoft Corporation MSFT 251.78 1.37 4,529,093 84,342 0.269
Tesla Inc. TSLA 388.02 3.81 8,686,354 178,704 0.127
Intel Corporation INTC 30.15 0.20 7,055,642 38,255 0.595
Eli Lilly and Company LLY 327.33 1.73 370,050 11,404 2.086
Snap Inc. SNAP 10.67 0.14 4,967,779 18,521 1.358
Ford Motor Company F 13.93 0.10 4,468,175 12,954 1.815
Carnival Corporation &
plc

CCL 9.24 0.12 5,874,376 15,372 1.518

SPDR S&P 500 ETF SPY 390.52 1.56 9,136,137 95,181 0.246

Mean price, its standard deviation, trading volume, number of transactions, and average time between transactions
are calculated for each day and then are averaged over 80 days. Trading volume is summed up for each day.
Average time is given in seconds.

Our study covers 80 trading days between 01-08-2022 and
21-11-2022.

Previous works

We continue the analysis in [Shternshis and Marmi, 2025].

The predictability of ultra-high frequency time series is assessed by two
entropy-based randomness tests.

The authors transform the tick-by-tick time series into binary sequences.
Their experiments prove that the degree of predictability decreases when
we aggregate data by a number of transactions.

0 20 40

0.5
1.0

APPL

0 20 40
0

1
MSFT

0 20 40

0.5

1.0
TSLA

0 20 40
0.0

0.5

INTC

0 20 40
0

1
LLY

0 20 40
0.0

0.5
SNAP

0 20 40
0.0

0.2

F

0 20 40
0.00
0.25

CCL

0 20 40
0

1
SPY

Fraction of p edictable daily inte vals

agg egation level

F
ac

tio
n

of
 p

 e
di

ct
ab

le
 d

ay
s

August Septembe Octobe Novembe

Figure 2: Fraction of predictable days for different months

Batteries of tests

We use two batteries to analyze our data:

1 NIST Statistical Test Suite

2 TestU01

+ Two entropy-based randomness tests from
[Shternshis and Marmi, 2025]

Classification of tests

Frequency tests: they evaluate whether the proportion of 0s and 1s is
coherent with the one of a uniform distribution.

Pattern tests: they detect specific local structures, repeated patterns,
and correlations between bits.

Entropy and complexity tests: they assess how difficult a sequence is to
compress or predict, using measures such as entropy estimation or linear
complexity.

Spectral tests: they apply discrete Fourier transforms to detect periodic
structures or unexpected frequency spikes that would not be present in
truly random data.

Random Walks tests: they analyze the cumulative behavior of sequences
interpreted as random walks, checking for imbalances, excursions from
the origin, and path regularities.

Taxonomy of tests

Category NIST STS Rabbit Alphabit
Frequency tests Frequency (Monobit),

Frequency Test within a
Block

MultinomialBitsOverlapping,
HammingWeight

MultinomialBitsOverlapping
(x4)

Pattern tests Runs Test,
Longest Run of Ones in a
Block,
Non-overlapping Template
Matching,
Overlapping Template
Matching,
Serial Test

ClosePairsBitMatch(x2),
LongestHeadRun,
PeriodsInStrings,
HammingCorrelation(x3),
HammingIndependence(x3),
AutoCorrelation(x2),
Runs Test

HammingCorrelation,
HammingIndependence (x2)

Entropy and
complexity tests

Binary Matrix Rank Test,
Maurer’s Universal Statisti-
cal Test,
Linear Complexity Test,
Approximate Entropy Test

AppearanceSpacings,
LinearComp,
LempelZiv,
MatrixRank(x3)

–

Spectral tests Discrete Fourier Transform Fourier1,
Fourier3

–

Random walks
tests

Cumulative Sums Test,
Random Excursions Test,
Random Excursions Variant
Test

RandomWalk1(x3),
RandomExcursions,
RandomExcursionsVariant

RandomWalk1(x2)

Shannon entropy

Definition ([Shannon, 1948])

Let X = {X1,X2, . . . } be a stationary random process with finite
alphabet A and measure p. The k-th order entropy of X is

Hk(X) = −
∑

xk∈Ak

p(xk) log p(xk)

The process entropy (aka entropy rate) of X is

h(X) = limk→∞
Hk (X)

k .

If X = {X1,X2, } is a sequence of i.i.d. binary Bernoulli
variables with p = (12 ,

1
2), then the process entropy is 1 bit.

Shannon Entropy test

Divide the sequence into nb = ⌊ nk ⌋ non-overlapping blocks of
length k : x̂t = {x(t−1)k+1, x(t−1)k+2, . . . , xtk}, t ∈ [1, nb]

Compute empirical frequencies f̂j of all blocks of length k :

f̂j =
∑nb

t=1 I(x̂t = aj), aj ∈ {0, 1}k , j ∈ [1, 2k]

Estimate the Shannon entropy: Ĥ = −
∑

j
f̂j
nb

ln
f̂j
nb

Test if the estimation is close to the possible maximum of
entropy: Y1 = 2nb(k ln 2− Ĥ), H0 : Y1 ∼ χ2(2k − 1)

KL distance and Mutual information

Definition

The Kullback–Leibler divergence (or relative entropy) between
two probability distributions P and Q is

D(P ∥Q) =
∑
x∈X

P(x) log
P(x)

Q(x)
.

Definition

Let (X ,Y) be a pair of random variables with values over the
space X × Y . The mutual information is defined as

I (X ;Y) = DKL(PXY ||PX ⊗ PY) .

Kullback-Leibler (KL) divergence test

Define no = n − k + 1 overlapping blocks:
x̄t = {xt , xt+1, . . . , xt+k−2}, t ∈ [1, no]

Compute empirical frequencies of blocks of length k: fij =∑no
t=1 I (x̄t = ai) I (xt+k−1 = aj) , ai ∈ {0, 1}k−1, aj ∈ {0, 1}

Evaluate the test statistic and assess whether it follows a
χ2-distribution:

Y2 = 2
∑

ij fij ln
no fij
f·j fi·

, H0 : Y2 ∼ χ2
(
(2k−1 − 1)

)
,

where f·j =
∑

i fij and fi · =
∑

j fij

Sanity check using RNGs

Since random number generators (RNGs) can be very different depending on
the nature of the “natural source” of randomness they use, we choose three
RNGs with different sources to perform a sanity check on the tests:

Quantis USB (ID Quantique) - quantum physics

urandom from Linux - environmental noise

Möbius function and the Riemann Hypothesis - pure mathematics

We generate strings of approximately the same length of our tick data strings,
use the same methodology on them, and run a sanity check by fixing a
threshold of 2% of accepted errors: if the number of failed tests is higher than
the threshold for all the three RNGs, we consider the sanity check failed for
that string-length and do not use the test for the corresponding financial data.

Sanity check results

NIST STS RABBIT BATTERY
N. Test 50K 100K 500K 1M N. Test 50K 100K 500K 1M

1 Frequency ✓ 1 MultinomialBitsOverlapping
2 BlockFrequency ✓ ✓ 2 ClosePairsBitMatch, t = 2 ✓ ✓ ✓ ✓
3 CumulativeSums ✓ ✓ 3 ClosePairsBitMatch, t = 4 ✓
4 Runs ✓ ✓ ✓ 4 AppearanceSpacings ✓ ✓
5 LongestRun ✓ ✓ ✓ 5 LinearComp ✓ ✓ ✓ ✓
6 Approx. Entropy ✓ ✓ ✓ ✓ 6 LempelZiv ✓ ✓ ✓ ✓
7 Serial ✓ ✓ ✓ ✓ 7 Fourier1 ✓ ✓ ✓ ✓
8 FFT ✓ ✓ 8 Fourier3 ✓ ✓ ✓ ✓
9 NonOverlappingTemplate ✓ ✓ 9 LongestHeadRun ✓ ✓ ✓ ✓

ALPHABIT BATTERY 10 PeriodsInStrings ✓ ✓ ✓ ✓
1 MultinomialBitsOverlapping, L = 2 ✓ ✓ ✓ ✓ 11 HammingWeight, L = 32 ✓ ✓ ✓ ✓
2 MultinomialBitsOverlapping, L = 4 ✓ ✓ ✓ ✓ 12 HammingCorrelation, L = 32 ✓ ✓ ✓ ✓
3 MultinomialBitsOverlapping, L = 8 ✓ ✓ ✓ ✓ 13 HammingCorrelation, L = 64 ✓ ✓ ✓ ✓
4 MultinomialBitsOverlapping, L = 16 ✓ ✓ ✓ ✓ 14 HammingCorrelation, L = 128 ✓ ✓ ✓
5 HammingIndependence, L = 16 ✓ ✓ ✓ ✓ 15 HammingIndependence, L = 16 ✓ ✓ ✓ ✓
6 HammingIndependence, L = 32 ✓ ✓ ✓ ✓ 16 HammingIndependence, L = 32 ✓ ✓ ✓ ✓
7 HammingCorrelation, L = 32 ✓ ✓ ✓ ✓ 17 HammingIndependence, L = 64 ✓ ✓ ✓ ✓
8 RandomWalk1, L = 64 ✓ ✓ 18 AutoCorrelation, d = 1 ✓ ✓ ✓ ✓
9 RandomWalk1, L = 320 ✓ ✓ ✓ 19 AutoCorrelation, d = 2 ✓ ✓ ✓ ✓

20 Run ✓ ✓
21 MatrixRank, 32× 32 ✓ ✓ ✓ ✓
22 MatrixRank, 320× 320 ✓ ✓ ✓ ✓
23 MatrixRank, 1024× 1024 ✓ ✓ ✓ ✓
24 RandomWalk1, L = 128 ✓
25 RandomWalk1, L = 1024 ✓ ✓ ✓ ✓
26 RandomWalk1, L = 10016 ✓ ✓ ✓ ✓

Results

When running the successful tests on the strings obtained from
financial data, we get the following results:

1. Our study aligns with the findings in
[Shternshis and Marmi, 2025], reaffirming that, generally,
randomness tends to increase as the aggregation level grows
up.

Figure 3: Results of smultin MultinomialBitsOver (L = 4) test from
Alphabit applied to CCL data.

Randomness tests results

2. However, novel methods and tests sometimes reveal
exceptions; for instance, there are cases where even at high
aggregation levels the result of tests reveals predictability. We
attribute this persistent predictability to their high trading
activity: sometimes it happens that aggregating until level 100
is not enough to see randomness emerge from the strings.

Figure 4: Results of Run test from Rabbit applied to AAPL data.

MultinomialBitsOver (L = 4) test

Figure 5: Results of smultin MultinomialBitsOver (L = 4) test from
Alphabit applied to CCL, INTC, LLY and SPY data.

ApproximateEntropy

Figure 6: Results of ApproximateEntropy test from NIST STS applied to
AAPL, CCL, INTC and SPY data.

Cumulative Sums

Figure 7: Results of CumulativeSums test from NIST STS applied to
CCL, INTC, LLY, and SNAP data.

Application to random beacons

The methodology we introduce in [Onofri et al., 2025] gives us the
possibility to let non-random binary strings obtained by UHF data
be whitened out by the process of aggregation for most stocks.
Using this randomizing process to build a random beacon brings
several advantages:

Online process: it does not require future information on tick
data, so we can update the strings as new data becomes
available. Strings can be computed on-the-fly.

Model-free: it does not assume any hypothesis, any model
and does not require to run any simulation.

More entropy: up to 500 entropy bits per day - if we consider
stocks of nearly 1 000 000 of bits per month aggregated at
level 100.

Strings can be used as a random seed as they are, or as
high-quality input for a randomness extractor.

Randomizing cryptocurrency data

Randomizing cryptocurrency data

There are several reasons to apply our methodology to
cryptocurrency data.

The major cryptocurrencies exhibit much higher transaction
volumes (for example, the trading of Bitcoin on a major CEX
recorded more than 169 million transactions in November
2025).
⇒ extraction of more entropy per unit time

Stock markets operate only during limited trading hours, while
cryptocurrency markets are open 24/7
⇒ real online approach.

By applying our aggregation-based whitening framework to crypto
transaction data, we aim to quantify whether their characteristics
lead to higher-quality randomness and to assess their suitability for
decentralized randomness generation and beacon applications.

Results on cryptocurrency data

Since tick data show a huge amount of correlation, we decided to
start aggregating from 1s data.

20 40 60 80 100
0

2

4

6

8

10

12

14

16

20 40 60 80 100 20 40 60 80 100

2025-11-14 2025-12-02 2025-12-04 2026-01-10

BTCUSDT ETHUSDT SOLUSDT

Figure 8: Results of Fourier3 test from Rabbit applied to BTCUSDT,
ETHUSDT and SOLUSDT data.

Results on cryptocurrency data

20 40 60 80 100
0

2

4

6

8

10

12

14

16

20 40 60 80 100 20 40 60 80 100

2025-11-14 2025-12-02 2025-12-04 2026-01-10

BTCUSDT ETHUSDT SOLUSDT

Figure 9: Results of MultinomialBitsOverlapping with L = 4 test from
Alphabit applied to BTCUSDT, ETHUSDT and SOLUSDT data.

Conclusions and bibliography

Methodology

String {s1, . . . , sN}

Price (↑) → add 1
Price (↓) → add 0

Binary strings bj ,ℓ

TESTS

Random string

Sanity check:
- Quantis
- urandom
- Möbius

Random seed or
High quality input for extractors

Conclusions

We introduce a new methodology to get random strings from
tick data. We apply standard RNG test batteries that allow
for a multidimensional analysis (Frequency, Patterns,
Spectral, etc.).

We confirm that aggregation increases randomness, but
monotonicity and speed of convergence may depend on the
asset and on the test employed.

Our methodology can be seen as an online model-free
whitening process, taking correlated strings to random ones,
then a good candidate for the construction of a random
beacon.

THANK YOU!

Randomness is in the eye of the beholder, or more precisely, in its computational capabilities. [...] This viewpoint,
developed by M. Blum, S. Goldwasser, S. Micali, and A. Yao in the early 1980s, marks a significant departure from
older views and has led to major breakthroughs in computer science of which the field of cryptography is only one

(Wigderson, 2009).

Bibliography I

▶ Clark, J. and Hengartner, U. (2010).

On the use of financial data as a random beacon.

In 2010 Electronic Voting Technology Workshop/ Workshop on Trustworthy
Elections (EVT/WOTE 10), Washington, DC. USENIX Association.

▶ Onofri, S., Shternshis, A., and Marmi, S. (2025).

Emergence of randomness in temporally aggregated financial tick sequences.

▶ Shannon, C. E. (1948).

A mathematical theory of communication.

The Bell System Technical Journal, 27(3):379–423.

▶ Shternshis, A. and Marmi, S. (2025).

Price predictability at ultra-high frequency: Entropy-based randomness test.

Communications in Nonlinear Science and Numerical Simulation,
141:108469.

	Random Beacons
	Tick data and methodology
	RNG test batteries
	Randomness tests results

	Randomizing cryptocurrency data
	Conclusions and bibliography

