Ultra-High Frequency Verifiable Public
Randomness from Tick-by-Tick Data

Silvia Onofri' ~ Andrey Shternshis> Stefano Marmit!

1 Scuola Normale Superiore, Pisa (ltaly)
2 Uppsala University, Uppsala (Sweden)

DeFi&Crypto Workshop - 27/01/2026

[1 Random Beacons

2 Tick data and methodology
= RNG test batteries
~ Randomness tests results

3 Randomizing cryptocurrency data

4 Conclusions and bibliography

What is a Random Beacon?

A Random Beacon is a protocol or service that regularly publishes
random values (seeds) that are unpredictable before publication
and publicly verifiable afterwards.
A secure beacon must satisfy three core properties:
1 Unpredictability: No party (including the beacon provider) can
predict the value of a future beacon output.
2 Verifiability: Anyone can verify that the beacon output was
generated correctly according to the public protocol.
3 Availability: The beacon produces new values at guaranteed,
regular intervals.
Random beacons are useful in scenarios such as lotteries, public
elections, audit challenges, cryptographic protocols, etc.

Sources of entropy to build random beacons

Physical methods: dice, coin flips, lottery ball machines (easy
to understand, hard to scale remotely)

Pre-published randomness: random tables, printed books of
values (verifiable but limited entropy and risk of re-use)

Network / harvested data: news headlines, weather reports,
blockchains

Financial/market data

Efficient markets and random number generators

Modern portfolio theory (Markowitz, Sharpe) and the statistical evidence
that stock prices follow random walks (Mandelbrot, Fama), has led to the
Efficient Market Hypothesis, see Samuelson (1965), Fama (1970).

Efficient Market Hypothesis

Asset prices fully and fairly reflect all available information.

Weak EMH

The price of a financial asset in an efficient market is a martingale, it behaves
like a random walk.

Therefore, an efficient market (EM) is a candidate for being a random
number generator (RNG): If we code only the direction of market returns,
then an efficient market should generate a random stream of Os and 1s
representing negative and positive returns, respectively.

Whether a market is efficient can then be tested in much the same way
that a hardware RNG might be tested.

Clark’s proposal

In [Clark and Hengartner, 2010], Clark and Hengartner propose a
model of random beacon that uses a stock market closing prices to
build a random beacon.
Fit a geometric Brownian motion (the Black—Scholes
stochastic model) to historical closing prices;
Use a Monte Carlo simulation to predict many next-day
outcomes to bound conservative min-entropy (6 — 9 bits of
entropy per day);
Use a portfolio of stocks to obtain more entropy (accounting
for correlations);
Use a randomness extractor to produce the beacon output.

Random beacon based on tick data

Our idea is to build a random beacon based on ultra-high
frequency tick data:

Longer strings = more entropy

Model-free: no need of any model and does not require to run
any simulation.

Online approach: one can compute the strings while data
becomes available.

In [Onofti et al., 2025], we develop a methodology to extract
random strings from tick data.

The journey from ticks to randomness

What is Tick Data? Every single trade event for a stock, e.g. Apple
(AAPL).

Every time shares are bought or sold a tick is created, recording at what
price, and how many stocks were traded.

The time frequency of this data varies a lot: You might get 50 events in
one millisecond during a market open and then no events for two full
seconds in the middle of the day.

At this tick-by-tick level, the price series is not random at all. It has
several predictable, short-term patterns (the so-called microstructure
noise)

For example, a large order being filled can create a temporary, predictable
price impact as it “eats through” the available liquidity.

Algorithmic Footprints: High-frequency trading algorithms might have
their own patterns (e.g., market-making strategies). Around two-thirds of
all the volume traded on stockmarkets is generated by algorithms.

Why do we need aggregation?

We aggregate trades {s;} by looking at (sub)sequences
{sj+ie} of ticks of step £ > 1.

We are essentially sampling the tick data at regular intervals
in “trade time".

Why Does Aggregation Increase Randomness? This is the
key. As you aggregate over longer and longer periods, the
(non-random) microstructure noise is “averaged out”.

Why do we need aggregation?

79.00

78.75

78.50

78,25

g s 0 4s 10130 15 0 4s 10131 15 0 4s 10132

feas ATV

15 0 45 10130 15 0 s 1031 15 0 45 1032

Inquiries: pr@nanex.net

Publication Date: November 29, 2010
http://www.nanex.net

Figure 1: From Nanex “Flash Crash Analysis” study

15

v
] . /.m.r‘"?‘xf
$ L

15

79.00

78,75

78,25

78.00

7.75

Methodology: from prices to binary strings

We consider only executed orders prices {s1, s, ...,sy} and compare
adjacent times to obtain binary strings b € {0, 1}*.

<1 then b— b0

=1 thenb—b
>1 then b— bl

Sj
r =

Si—1

Then we construct other sequences by aggregating data by an
aggregation level £=1,...,100. We consider £ samplings to build binary
strings bj, j=1,...,/.

<1 then b; — b0
=1 then b — b;
>1 then bj — b1

Sj+it
Sj+(i—1)¢

From each initial sequence {s;} we get Zio:ol k = 5050 different binary
sequences. We test all these sequences with standard batteries of
randomness tests.

Dataset

Asset Ticker Mean Standard Daily trad- Daily num- Average time
price deviation ing volume ber of between
of price transac- transactions
tions

Apple Inc. AAPL 153.47 0.93 12,184,032 136,136 0.165
Microsoft Corporation MSFT 251.78 1.37 4,529,093 84,342 0.269

Tesla Inc. TSLA 388.02 3.81 8,686,354 178,704 0.127

Intel Corporation INTC 30.15 0.20 7,055,642 38,255 0.595

Eli Lilly and Company LLY 327.33 1.73 370,050 11,404 2.086

Snap Inc. SNAP 10.67 0.14 4,967,779 18,521 1.358

Ford Motor Company F 13.93 0.10 4,468,175 12,954 1.815
Carnival Corporation & CCL 9.24 0.12 5,874,376 15,372 1.518

plc

SPDR S&P 500 ETF SPY 390.52 1.56 9,136,137 95,181 0.246

Mean price, its standard deviation, trading volume, number of transactions, and average time between transactions
are calculated for each day and then are averaged over 80 days. Trading volume is summed up for each day.
Average time is given in seconds.

Our study covers 80 trading days between 01-08-2022 and
21-11-2022.

Previous works

We continue the analysis in [Shternshis and Marmi, 2025].
The predictability of ultra-high frequency time series is assessed by two
entropy-based randomness tests.
The authors transform the tick-by-tick time series into binary sequences.
Their experiments prove that the degree of predictability decreases when
we aggregate data by a number of transactions.

Fraction of predictable daily intervals
APPL MSFT TSLA

N L ™

0 20 40 0 20 40 0 20 40
INTC LLY SNAP

1
0151%]\A
0.0 V2 v 0 . e
) 20 40 0 20 40 o 20 40
F CcCL SPY
1
usz! ozsjgw: \
0.0 ! 0.00 0
0 20 40 0] 20 40

20 40
aggregation level

Fraction of predictable days

—— August September ~ —— October ~—— November

Figure 2: Fraction of predictable days for different months

Batteries of tests

We use two batteries to analyze our data:
1 NIST Statistical Test Suite
2 TestUO1

+ Two entropy-based randomness tests from
[Shternshis and Marmi, 2025]

Classification of tests

. they evaluate whether the proportion of Os and 1s is
coherent with the one of a uniform distribution.

Pattern tests: they detect specific local structures, repeated patterns,
and correlations between bits.

. they assess how difficult a sequence is to
compress or predict, using measures such as entropy estimation or linear
complexity.

: they apply discrete Fourier transforms to detect periodic
structures or unexpected frequency spikes that would not be present in
truly random data.

: they analyze the cumulative behavior of sequences
interpreted as random walks, checking for imbalances, excursions from
the origin, and path regularities.

Taxonomy of tests

Category

NIST STS

Rabbit

Alphabit

Frequency tests

Frequency (Monobit),
Frequency Test within a
Block

MultinomialBitsOverlapping,
HammingWeight

MultinomialBitsOverlapping
(x4)

Pattern tests

Runs Test,

Longest Run of Ones in a
Block,

Non-overlapping Template
Matching,
Overlapping
Matching,
Serial Test

Template

ClosePairsBitMatch(x2),
LongestHeadRun,
PeriodsInStrings,
HammingCorrelation(x3),
HammingIndependence(x3),
AutoCorrelation(x2),

Runs Test

HammingCorrelation,
Hamminglndependence (x2)

Entropy and
complexity tests

Binary Matrix Rank Test,
Maurer’s Universal Statisti-

AppearanceSpacings,
LinearComp,

cal Test, LempelZiv,
Linear Complexity Test, MatrixRank(x3)
Approximate Entropy Test
Spectral tests Discrete Fourier Transform Fourierl, -
Fourier3

Random walks
tests

Cumulative Sums Test,
Random Excursions Test,
Random Excursions Variant
Test

RandomWalk1(x3),
RandomExcursions,
RandomExcursionsVariant

RandomWalk1(x2)

Shannon entropy

Definition ([Shannon, 1948])

Let X = {X1, Xo,...} be a stationary random process with finite
alphabet A and measure p. The k-th order entropy of X is

Hi(X) == > p(x¥)log p(x*)

xke Ak

The process entropy (aka entropy rate) of X is
h(X) = limy_ oo FX).

a sequence of i.i.d. binary Bernoulli

If X ={X1,Xo,....}i
%,), then the process entropy is 1 bit.

s
variables with p = (%

Shannon Entropy test

Divide the sequence into n, = | 7| non-overlapping blocks of
|ength k:)?t = {X(t—l)k+l’x(t—l)k+2> s ath}v te [15 nb]

Compute empirical frequencies lA‘j of all blocks of length k:
?J' = Zgill-()?f = aj)? aj € {07 1}k7j S [172k]

Estimate the Shannon entropy: H = — > Lln Ul

] Np np
Test if the estimation is close to the possible maximum of

~

entropy: Y7 =2n,(kIn2 — H), Hy: Y1~ x?(2k-1)

>

KL distance and Mutual information

Definition
The Kullback-Leibler divergence (or relative entropy) between
two probability distributions P and @ is

D(P[|Q)=> P(x)log PE)X(;.

xeX
Definition

Let (X, Y) be a pair of random variables with values over the
space X X Y. The mutual information is defined as

1(X;Y) = Dki(Pxy||Px ® Py).

Kullback-Leibler (KL) divergence test

Define n, = n — k + 1 overlapping blocks:
Xt = {Xt, Xt4+1, - s Xewk—2}, t € [1,10]
Compute empirical frequencies of blocks of length k: f; =
Sy T (% = 3) T (xericr =) a7 € {0,114 3 € {0,1}
Evaluate the test statistic and assess whether it follows a
X -distribution:
=2, fjln Z"f?, Ho: Ya ~ x2 ((2k71 — 1)),
Where fi=>; f,J and fi. =3 . fj

Sanity check using RNGs

Since random number generators (RNGs) can be very different depending on
the nature of the “natural source” of randomness they use, we choose three
RNGs with different sources to perform a sanity check on the tests:

Quantis USB (ID Quantique) - quantum physics
urandom from Linux - environmental noise
Mobius function and the Riemann Hypothesis - pure mathematics

We generate strings of approximately the same length of our tick data strings,
use the same methodology on them, and run a sanity check by fixing a
threshold of 2% of accepted errors: if the number of failed tests is higher than
the threshold for all the three RNGs, we consider the sanity check failed for
that string-length and do not use the test for the corresponding financial data.

Sanity check results

NIST STS RABBIT BATTERY
N. | Test 50K | 100K | 500K [IM || N. | Test 50K | 100K | 500K | 1M
1 | Frequency v 1 | MultinomialBitsOverlapping
2 | BlockFrequency v v 2 | ClosePairsBitMatch, t =2 v v v v
3 | CumulativeSums v v 3 | ClosePairsBitMatch, t = 4 v
4 | Runs v v v 4 | AppearanceSpacings v v
5 | LongestRun v v v 5 | LinearComp v v v v
6 | Approx. Entropy v v v v 6 | LempelZiv v v v v
7 | Serial v v v v || 7 | Fourierl v v v v
8 | FFT v v 8 | Fourier3 v v v v
9 | NonOverlappingTemplate v v 9 | LongestHeadRun v v v v
ALPHABIT BATTERY 10 | PeriodsInStrings v v v v
1 | MultinomialBitsOverlapping, L =2 v v v v 11 | HammingWeight, L = 32 v v v v
2 | MultinomialBitsOverlapping, L = 4 v v v v || 12 | HammingCorrelation, L = 32 v v v v
3 | MultinomialBitsOverlapping, L =8 v v v v 13 | HammingCorrelation, L = 64 v v v v
4 | MultinomialBitsOverlapping, L =16 | v v v v 14 | HammingCorrelation, L = 128 v v v
5 | Hamminglndependence, L = 16 v v v v || 15 | Hamminglndependence, L =16 | v v v v
6 | Hamminglndependence, L = 32 v v v v || 16 | HammingIndependence, L =32 | v v v v
7 | HammingCorrelation, L = 32 v v v v 17 | Hamminglndependence, L =64 | v v v v
8 | RandomWalkl, L = 64 v v 18 | AutoCorrelation, d =1 v v v v
9 | RandomWalk1, L = 320 v v v 19 | AutoCorrelation, d =2 v v v v
20 | Run v v
21 | MatrixRank, 32 x 32 v v v v
22 | MatrixRank, 320 x 320 v v v v
23 | MatrixRank, 1024 x 1024 v v v v
24 | RandomWalkl, L = 128 v
25 | RandomWalk1, L = 1024 v v v v
26 | RandomWalk1, L = 10016 v v v v

Results

When running the successful tests on the strings obtained from
financial data, we get the following results:
Our study aligns with the findings in
[Shternshis and Marmi, 2025], reaffirming that, generally,
randomness tends to increase as the aggregation level grows
up.

August 2022 September 2022 October 2022 November 2022

-log,(smultin_MultinomialBitsOver (L=4))

Figure 3: Results of smultin_MultinomialBitsOver (L = 4) test from
Alphabit applied to CCL data.

Randomness tests results

However, novel methods and tests sometimes reveal
exceptions; for instance, there are cases where even at high
aggregation levels the result of tests reveals predictability. We
attribute this persistent predictability to their high trading
activity: sometimes it happens that aggregating until level 100
is not enough to see randomness emerge from the strings.

November 2022

-log, (sstring_Run)

Figure 4: Results of Run test from Rabbit applied to AAPL data.

MultinomialBitsOver

4))

-log, (smultin_MultinomialBitsOver (L

INTC

LLY

August 2022

L

— 4) test

September 2022

50 100

November 2022

50 100

Aggregation Level

ApproximateEntropy

-log, (ApproximateEntropy)

Q
a
jal

INTC

August 2022

September 2022 October 2022

November 2022

o

50 100
Aggregation Level

Cumulative Sums

August 2022 September 2022 October 2022 November 2022
ccL
& INTC
£
3
?
4
2
s
3
E
3
<
g
b
Ty
SNAP
i
50 100

Aggregation Level

Application to random beacons

The methodology we introduce in [Onofti et al., 2025] gives us the
possibility to let non-random binary strings obtained by UHF data
be whitened out by the process of aggregation for most stocks.
Using this randomizing process to build a random beacon brings
several advantages:

Online process: it does not require future information on tick
data, so we can update the strings as new data becomes
available. Strings can be computed on-the-fly.

Model-free: it does not assume any hypothesis, any model
and does not require to run any simulation.

More entropy: up to 500 entropy bits per day - if we consider
stocks of nearly 1000000 of bits per month aggregated at
level 100.

Strings can be used as a random seed as they are, or as
high-quality input for a randomness extractor.

Randomizing cryptocurrency data

There are several reasons to apply our methodology to
cryptocurrency data.

The major cryptocurrencies exhibit much higher transaction
volumes (for example, the trading of Bitcoin on a major CEX
recorded more than 169 million transactions in November
2025).

= extraction of more entropy per unit time

Stock markets operate only during limited trading hours, while
cryptocurrency markets are open 24/7
= real online approach.

By applying our aggregation-based whitening framework to crypto
transaction data, we aim to quantify whether their characteristics
lead to higher-quality randomness and to assess their suitability for
decentralized randomness generation and beacon applications.

Results on cryptocurrency data

Since tick data show a huge amount of correlation, we decided to
start aggregating from 1s data.

BTCUSDT ETHUSDT SOLUSDT

|
‘ '1 ! g
i mJ..JWWMMM e ey e [R PR S

B 2025-11-14 © 2025-12-02 B 2025-12-04 & 2026-01-10

h
h

Figure 8: Results of Fourier3 test from Rabbit applied to BTCUSDT,
ETHUSDT and SOLUSDT data.

Results on cryptocurrency data

f

T
|I
“ mmmmm WWWMWW ‘, m! T H m&wwmwmwa

B 2025-11-14 © 2025-12-02 B 2025-12-04 & 2026-01-10

Figure 9: Results of MultinomialBitsOverlapping with L = 4 test from
Alphabit applied to BTCUSDT, ETHUSDT and SOLUSDT data.

Methodology

String {s1,...,sn}

— add 1
— add 0

Binary strings bj ¢

Sanity check:
- Quantis
- urandom

- Mébius

Random strin Random seed or
¢ High quality input for extractors

TESTS

Al

Conclusions

We introduce a new methodology to get random strings from
tick data. We apply standard RNG test batteries that allow
for a multidimensional analysis (Frequency, Patterns,
Spectral, etc.).

We confirm that aggregation increases randomness, but
monotonicity and speed of convergence may depend on the
asset and on the test employed.

Our methodology can be seen as an online model-free
whitening process, taking correlated strings to random ones,
then a good candidate for the construction of a random
beacon.

THANK YOU!

Randomness is in the eye of the beholder, or more precisely, in its computational capabilities. [...] This viewpoint,

developed by M. Blum, S. Goldwasser, S. Micali, and A. Yao in the early 1980s, marks a significant departure from

older views and has led to major breakthroughs in computer science of which the field of cryptography is only one
(Wigderson, 2009).

Bibliography |

> Clark, J. and Hengartner, U. (2010).
On the use of financial data as a random beacon.

In 2010 Electronic Voting Technology Workshop,/ Workshop on Trustworthy
Elections (EVT/WOTE 10), Washington, DC. USENIX Association.

> Onofri, S., Shternshis, A., and Marmi, S. (2025).

Emergence of randomness in temporally aggregated financial tick sequences.

» Shannon, C. E. (1948).
A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379-423.

> Shternshis, A. and Marmi, S. (2025).
Price predictability at ultra-high frequency: Entropy-based randomness test.

Communications in Nonlinear Science and Numerical Simulation,
141:108469.

	Random Beacons
	Tick data and methodology
	RNG test batteries
	Randomness tests results

	Randomizing cryptocurrency data
	Conclusions and bibliography

